

ZEUS Air Cooled Scroll Chillers ACDS 50/60Hz Cooling Capacity: 10 to 183 TR (35 to 643 kW)

Products that perform...By people who care

DUNHAM-BUSH®

INTRODUCTION

For more than 100 years, Dunham-Bush has focused on innovative product development. Today, we provide a full portfolio of HVAC/R products from Fan Coil Units to large centrifugal chillers as well as many other innovative green solutions. Our commitment to innovation, matched with an aggressive attitude toward growth, makes Dunham-Bush a leader in global markets. Our product development is tailored to meet the specific needs of customers, building-by-building, country-by-country and region-by-region. No other HVAC/R manufacturer takes this approach to meeting your performance expectations.

ZEUS series, ACDS Air Cooled Scroll Chillers, have a cooling capacity range from 10 to 183 TR [35 to 643 kW] version using environmentally sound HFC-410A refrigerant. The entire product line features energy efficiency, installation ease, control flexibility, high reliability, compact footprint and advanced controls.

Scroll Compressors are designed for Commercial/Industrial Applications and provide the same high quality and efficiency as Reciprocating or Screw Compressors. They have been developed specifically for use in Packaged Chillers and Condensing Unit products.

Upon shipment, the new ACDS R410A unit is installation-ready with a compact size, reduced weight, and complete factory piping and wiring. Refrigerant charge is included and a thorough factory test under load is conducted on each unit to ensure trouble-free start-up and operation.

TABLE OF CONTENTS

Page	e N	C
	• • •	

Introduction	
Nomenclature	2
General Characteristics	3
Unit Features	3
Options/ Accessories	6
Physical Specifications	8
Performance Data	
Sound Pressure Data	
Couria i roccuro Batannininininininininini	

Page	No
	-

	<u> </u>
Electrical Data	16
Dimensional Data	18
Floor Loading Diagram	28
Evaporator Water Pressure Drop	
Field Power & Control Wiring Schematic	32
Application Data	32
Guide Specifications	

NOMENCLATURE

GENERAL CHARACTERISTICS

UNIT FEATURES

GENERAL

- ✤ 30 models from 10 up to 183 TR [35 to 643 kW] for 50Hz and 60Hz units
- The unit is designed to operates with R410a refrigerant, the environment friendly refrigerant with zero ODP (Ozone Depletion Potential)
- Units are rated and certified with AHRI standard 550/590
- ✤ ETL listed for 60Hz models
- ✤ Unit operating ambient temperature , 45 ~ 115°F [7 ~ 46°C]

COMPRESSORS

- Reliable Tandem or Trio scroll compressors
- Compressor lead-lag configuration on all models
- Suction gas cooled motor
- High EER
- Solid state motor protection module monitors motor winding temperature via embedded PTC sensors. This protects motor overheating caused by overload, low refrigerant flow and incorrect motor rotation
- Crankcase heaters are provided to minimized oil dilution and liquid refrigerant migration

UNIT CASING

- Casing are constructed from heavy gauge galvanized steel
- Powder coated baked finishing, offers excellent corrosion resistance for outdoor applications, which withstand up to 1000 hours salt spray test in accordance to ASTM B-117

UNIT FEATURES

EVAPORATOR

- Compact and high efficiency brazed plate heat exchanger
- Constructed with stainless steel plates
- Design pressure of 450 psig [31 bar] on refrigerant circuit
- Design pressure of 400 psig [28 bar] on fluid circuit
- Environment friendly with reduced refrigerant charged by its compact design
- Lower pressure drop on water side
- Victaulic groove water connection comply to ANSI/AWWA C-606, for 50Hz units
- NPT thread connection, for 60Hz units
- ✤ 1" [25mm] thick closed cell insulation

CONDENSER AND FANS

- Constructed with seamless inner-grooved copper tubes expanded into die-formed aluminum fins in staggered configuration.
- ✤ Leak and pressure test at 650psig [45bar]
- Coil design with sub-cooling enhancement to improve unit efficiency
- Low noise direct driven propeller fans
- ✤ IP 54 motor construction for outdoor applications

FACTORY TESTING

- Each chiller undergoes the factory testing prior to unit shipment. This assures consistencies of workmanship at highest quality
- Thus, all units shipped are completely factory tested; charged and adjusted according to the design parameters, for ease of installation and minimal field start-up adjustments

ELECTRICAL and CONTROL

- Weather tight electrical enclosure fabricated by heavy gauge sheet steel with powder coated baked finishing.
- Single point power connection for all models

- Circuit breaker for compressors and condenser fan motors.
- Unit mounted Direct On-Line (DOL) starter for compressors and condenser fans motors
- Thermal overload protection for compressor motors
- Step down transformer for control circuit
- Main power supply monitoring module (OUVR) giving protection on under or over voltage, phase reversal, phase losses and imbalance
- Built-in anti-recycle timer for compressors to avoid excessive motor winding temperature rise due to frequent motor startup
- Type of controller offered :-

50 Hz Units								
ACDS 010 - 175	Micro Vision							
ACDS 010 - 175	DB Director (Option)							
	60 Hz Units							
ACDS 010 190	Micro Vision							
ACD3 010 - 180	DB Director (Option)							
60 Hz Units (For US Region)								
ACDS 010 - 180	ACDS 010 – 180 DB Director							

MICRO VISION CONTROLLER

Micro Vision a flexible and advance programmable microprocessor controller designed specifically for the application and precise control of Dunham-Bush Scroll compressor chillers

The controller is provided with a set of terminals that connect to various devices such as temperature sensors, pressure and current transducers, solenoid valves, compressors and fans starters, control relays, etc.

Micro Vision controller is equipped with a user friendly terminal with a semi-graphic display and dedicated keys that provides easy access to the unit operating conditions, control set points and alarm histories.

Each unit's controller can be configured and connected to the Dunham-Bush DBLAN network that allows multiple chillers sequencing control without additional controller or panel. Dunham-Bush DBLAN is the local area network made up of several chillers' controller.

Display and User Terminal

The Micro Vision controller is designed to work with a user friendly back-lit 132 by 64 pixels PGDE Semi-Graphic Display panel connected with the controller through a telephone cable. The terminal display allows carrying out of the unit operations, and also allows the unit working conditions, compressor run times and alarm history to be displayed. Set points and other parameters can be modified via the user terminal. The display has an automatic self-test of the controller on system start-up. Multiple messages will be displayed automatically by scrolling from each message to the next. All of these messages are spelled out in English on the display terminal.

Easily accessible measurements include:

- Leaving chilled water temperature
- Rate of Change for leaving chilled water temperature
- Evaporator and condenser pressure
- Run hours of each compressor
- Number of starts of each compressor
- Compressors and condenser fans motors status
- Water Flow Switch Status, Remote Start/Stop Command Status

Capacity Control

Leaving chilled water temperature control is accomplished by entering the leaving water temperature setpoint and placing the controller in automatic control. Micro Vision monitors all control functions and determines number of running compressors to match the building cooling load demand.

The compressors staging is programmable and may be set for specific building requirements. Remote adjustment of the leaving chilled water setpoint is accomplished either through High Level Interfacing (HLI) via BMS communication, or Low Level Interfacing (LLI) via an external are available as option.

System Control

The unit may be started or stopped manually, or through the use of an external signal from a Building Automation System.

System Protection

The following system protection controls will automatically act to ensure system reliability:

- ✤ Low evaporator pressure
- High condenser pressure
- Freeze protection
- Compressor run error
- Power loss
- Chilled water flow loss
- Sensor error
- Compressor Anti-recycle
- High motor temperature
- Compressor overload

Remote Monitoring And Control (Option)

Dunham-Bush, the leader of HVAC solution provider understands the arising focus on chiller plant performance and optimization. Several solutions as below are offered to the building owner to achieved optimized chiller plant room controls, operation and performance.

Dunham-Bush Chiller Plant Manager (CPM) (Option)

DB Chiller Plant Manager (*CPM*) is a trustworthy and headache-free solution for building owners and users on chiller plant control and automation system. *CPM*'s advanced controllers monitor and control equipments in chiller plant such as chillers, primary and secondary chilled water pumps, variable frequency drives (VFD), motorized valves, bypass modulating valves, and etc. Field devices such as flow meters, BTU meters, digital power meters, sensors and transducers can be interfaced with *CPM* via HLI or LLI. CPM controls chillers and pumps sequencing, as well as lead-lag, duty-standby and alarm changeover operations.

<u>NetVisorPRO</u> – Monitoring software of <u>CPM</u> system which allows system monitoring, historical trending, and alarm logging to be carry out at a PC terminal. Graphical animations on system operation, temperature and flow rate trend graphs, historical data and alarm history logs, settings changes are all available with <u>NetVisorPRO</u>.

Chiller plantroom control and automation by Dunham-Bush <u>CPM</u> provides the owners with a chiller system in stable operation, optimized performance and energy efficiency.

DB-LAN Master Slave Sequencing Control (MSS) (Option)

In a chiller system with multiple Dunham-Bush ACDS chillers, Micro Vision controller of each chiller can be connected to the DB-LAN network via a communication bus without additional controller, to enable Master-Slave Sequencing Control of this chiller system. <u>MSS</u> will stage in/out chiller in operation to match building required cooling capacity. Chiller Lead-lag, duty-standby and alarm changeover controls are come with <u>MSS</u>, as well as the chilled water pumps control. Each <u>MSS</u> DB-LAN network can be connected up to 8 numbers of chillers.

Building Management System (BMS) Communication (Option)

Micro Vision is able to communicate to BMS through the add-on communication card via various common protocols as:

- Modbus RTU RS485, ModBus TCPIP
- ✤ BACnet over IP, MS/TP, or PTP
- ֎ LONworks FTT 10

OPTIONS AND ACCESSORIES

Shell-And-Tube Evaporator (ST) – Shell-And-Tube vessel is supplied as evaporator in lieu of brazed plate heat exchanger. Shell-And-Tube evaporator is constructed in accordance with ASME Codes Sections VIII Division I for unfired pressure vessels. ASME stamp is available on request.

Double Thick Insulation – Evaporator with double thick 2" [50mm] closed cell insulation, for extra resistance to condensation.

Dual Mode Operation – The unit with dual mode operation can deliver chilled fluid temperature down to $20 \,^{\circ}$ F [-6.6 $^{\circ}$ C] during ice making mode. Units with Dual Mode Operation is used for Ice Thermal Storage System.

Low Temp. Operation – The unit with Low Temp. Operation can deliver chilled fluid temperature down to $20 \,^{\circ}\text{F}$ [-6.6 $\,^{\circ}\text{C}$] for process cooling application.

Low Noise Fan (LNF) – Incorporate low noise fans to reduce unit sound level.

Compressor Acoustic Jacket (LN2) – Compressor acoustic jackets is added to further reduce the unit sound level. The acoustic jackets are made from high performing sound proof material and offer excellent high and low frequency attenuation.

Low Ambient Operation (LA1) – Variable frequency drive (VFD) is incorporated to the condenser fan motor to allow unit operation down to $30^{\circ}F$ [-1°C] ambient operation

Low Ambient Operation (LA2) – Beside VFD at condenser fan motor, additional electronic control device is added to the unit to allow the unit operation down to $0^{\circ}F$ [-18°C] ambient temperature.

Extreme Low Ambient Operation (LA3) – Extreme low ambient kit which consists of VFD, electronic control device and refrigerant liquid receiver are incorporated into the unit to allow the unit operation down to -20°F [-29°C] ambient temperature.

Heat Recovery (DES) – The hot gas desuperheater; a brazed plate heat exchanger that reclaims 'waste' heat from compressor to produce hot water up to 55°C. Shell-and-tube desuperheater is available on request.

Condenser Corrosion Protection – Copper (CU) fins or Hydrophilic coated fins are provided to give better corrosion protection. **DB-COAT**, the post-coated solution for condenser coil to provide extensive corrosion protection for harsh environment.

Protective Panels for Condenser Coil – Wire-mesh panels to protect condenser coil faces and prevent unauthorized access to it.

Hail Guard – Painted galvanized steel panels with oblong slots are installed full casing height at all sides of the unit to provide hail protection, general mechanical security and unit aesthetics.

Hot Gas Bypass (HGBP) – To maintain unit operation below minimum unloaded capacity. This minimizes compressor cycling and extends component life, on low load conditions.

Pressure Gauges (GAG) – Pressure gauges are installed on the unit to display suction and discharge pressure readings.

Evaporator Heater (EVH) – Strip heater is wrapped around the evaporator to provide anti-freeze protection down to -20°F[-28.9°C] ambient temperature.

Hydronic Pump Package (HPP) – This package includes pumps and fittings. Up to 50ft.wg pump head is available for the ease of installation. Dual pumps package is available for the ease of duty-standby operation.

ELECTRICAL AND CONTROLS (OPTION)

Unit Mounted Main Disconnect Switch – Non-fused disconnect switch with external lockable handle is furnished to isolate unit main incoming power supply for servicing.

Soft-starter For Compressor Motors – Solid State starter to reduced mechanical stress and inrush current at compressor start-up.

IP55 Control Panel – Control panel with IP55 rating can be supplied for harsh working environment.

Voltmeter (VM3) / Ammeter (AM3) – Analog ammeter or voltmeter with 3 phase selector switch for voltage / current indication, located inside the control panel.

Ground Fault Interrupt (GFI) – Provides equipment with ground fault protection.

Convenience Outlet (CON) – 115Vac GFCI convenience outlet with female receptacle is supplied for 60Hz units.

Weather Proof Alarm Bell (WPA) – Audible alarm for common alarm fault alert.

Indicating lights – Indications provided for highpressure trip, compressors overload trip and compressor run.

OPTIONS AND ACCESSORIES

<u>Below options are available for units with</u> <u>intelligent controller.</u>

Low Ambient Monitoring and Lock-Out (LAL) – Ambient temperature sensor is supplied and ambient temperature readout is used to lock-out unit to prevent unit operation at low ambient condition.

Entering Chilled Water Temperature Sensor – Temperature sensor is installed to monitors fluid temperature returns to unit evaporator.

Chilled Water Pump Control – Primary chilled water pump is controlled by chiller's Micro Vision controller for enhanced safety operation.

System Voltage Measurement (SVM) – Voltage of power supply is displayed on the unit display panel.

Chilled Water Reset (RFTR) – Low level interfacing with Building Automation System (BAS). Chilled Water Reset allows controlled temperature setpoint to be reset by a 4-20mA signal from BAS.

Demand Limiting (AMPL) – Low level interfacing with Building Automation System (BAS) to limit maximum running compressors.

BMS Communication – Various add-on communication cards provide BMS communication via common protocols: Modbus RTU RS485 / TCPIP, LONworks FTT10, BACnet over IP / MSTP / PTP.

FACTORY SUPPLIED, FIELD INSTALLED BY CUSTOMER

Evaporator Water Flow Switch (WFS)–Shipped loose flow switch to be installed at evaporator outlet piping as safety interlock to evaporator water flow status. Three options are available: Weather tight flow switch with CE mark; NEMA 1, and NEMA 4 rated flow switch.

Rubber-in-shear Isolators (RIS) – Designed for ease of installation. These one-piece molded rubber isolators are applicable for most installations.

Spring Isolators (SPG) – Spring isolator with 1" [25.4mm] deflection. These housed spring assemblies have a neoprene friction pad at the bottom to prevent the passage of noise, and a spring locking levering bolt at the top. Neoprene inserts prevent contact between the steel upper and lower housings. Suitable for more critical application as compared to rubber-in-shear isolator.

DB-LAN Master Slave Sequencing Control (MSS) – Pre-programmed at factory; field supplied and installed inter-connection wiring between chillers to provide communication bus among chillers' controllers to enable Master-Slave Sequencing Control.

Chiller Plant Manager (CPM) – Factory supplied control panel; field supplied and installed interconnection wiring and field devices; for complete chiller plantroom automation.

DB DIRECTOR

DB-Director is a rugged microprocessor based controller designed for the HVAC/R applications. DB-Director provides flexibility with setpoints and control options that can be selected prior to commissioning a system or when the unit is live and functioning. Displays, alarms and other interfaces are accomplished in a clear and simple language that informs the user as to the status of the controller.

DB-Director is equipped with 128 x 64 pixels monochrome graphics LCD display with 2.8" diagonal viewing area, and 9 dedicated keys that enable user to access information, base on security level of the password. The user terminal is allows displaying and easy access to the unit working conditions, compressor run times, alarm histories and modify the parameters. Multiple messages will be displayed by automatically scrolling from each message to the next. All of these messages are spelled out in English language on the display terminal.

The display also has an automatically self-test of the controller on system start-up. For more detail operation of the DB-Director keypad, please refer to the Unit operation Manual.

Remote Monitoring

DB-Director is equipped with RS485 and Ethernet communication ports as standard. This user friendly design allows Building Management System (BMS) to interface directly with the chiller via either of Modbus RTU, Modbus IP, or BACnet IP communication protocol. LONworks or BACnet MSTP communication protocol can be established with installation of external adapter.

PHYSICAL SPECIFICATIONS

50 Hz

Model ACDS	010	020	030	040		050	060	065	070
Unit Nominal Capacity TR[kW]	10.6 [37.4]	19.9 [70.0]	27.3 [96.0]	41.5 [146	6.0] 5	54.6 [192.0]	63.3 [222.6]	67.1 [236.0]	71.3 [250.8]
Unit Nominal Power Input kW	12.5	23.0	32.1	48.4	48.4 64.1		75.0	71.4	81.3
EER	10.21	10.41	10.21	10.30)	10.21	10.13	11.27	10.52
	11		COMPRESS	OR				1	<u> </u>
RPM					2900	0			
Min. % Unit Capacity	100% 50%		50%	25%	25% 25%		25%	25%	25%
No. Of Refrigerant Circuit	1 1		1	2		2	2	2	2
	11		EVAPORAT	OR				1	
Water Connector inches[mm]	2[50.8]	2[50.8]	2[50.8]	3[76.2	2]	3[76.2]	3[76.2]	3[76.2]	3[76.2]
Nominal Water Flow USgpm[m ³ /hr]	25.5[5.8]	47.8 [10.9]	65.5 [14.9]	99.6 [22	2.6]	131.0 [29.8]	151.9 [34.5	161.0 [36.6]	171.1 [38.9]
Nominal Pressure Drop ft.wg[kPa]	12.9[38.6]	11.2 [33.5]	13.8 [41.2]	15.0 [44	4.8]	12.9 [38.6]	9.8 [29.3]	9.3 [27.8]	10.4 [31.1]
Min/Max. Water Flow USgpm[m ³ /hr]	23.0/73.0	42.0/131.0	53.0/ 161.0	72.0/21	6.0 1	116.0/351.0	121.0/ 363.0) 136.0/410.0	136.0/410.0
Min/Max. Water Pressure Drop	[5.2/ 16.6]	[9.5/ 29.8] 8.8/ 72.4	9.3/ 72.7	8.2/62	9.1]	10.3/ 80.0	6.4/48.9	6.8/ 52.6	[30.9/ 93.1] 6.8/ 52.6
ft.wg[kPa]	[33.2/ 280.1]	[26.3/ 216.4]	[27.8/ 217.3]	[24.5/ 18	87.4] [[30.8/ 239.1]	[19.1/ 146.2] [20.3/ 157.2]	[20.3/ 157.2]
			CONDENS	ER				-	
Total Face Area ft ² [m ²]	21.1 [2.0]	40.6[3.8]	47.1[4.4]	94.1[8.	.7]	94.1[8.7]	94.1[8.7]	133.0[12.4]	133.0[12.4]
Total Air Flow cfm[m³/hr]	11000 [18688]	21400 [36359]	20600 [34500]	44000 [74756	0 61	41200 [70000]	41200 [70000]	60900 [103470]	60900 [103470]
No Of Fan	1	2	2	4	-	4	4	6	6
Fan Motor kW Input (Qty)	1.56 (1)	1.56 (2)	1.56 (2)	1.56 (4	4)	1.56 (4)	1.56 (4)	1.56 (6)	1.56 (6)
Fan FLA , Amp (Qty)	4.0 (1)	4.0 (2)	4.0 (2)	4.0 (4))	4.0 (4)	4.0 (4)	4.0 (6)	4.0 (6)
			GENERA	L					
Unit Length inches[mm]	60 5/8[1540]	99[2510]	99[2510]	115 3/4[2	940] 1	15 3/4[2940]	115 3/4[2940)] 151 1/2[3850]] 151 1/2[3850]
Unit Width inches[mm]	49 1/4 [1250]	49 1/4[1250]	52 3/4[1340]	89[226	60]	89[2260]	89[2260]	89[2260]	89[2260]
Unit Height inches[mm]	74 5/8[1900]	74 5/8[1900]	88 1/2[2250]	87 1/2[22	220] 8	87 1/2[2220]	87 1/2[2220] 93 1/2[2380]	93 1/2[2380]
Shipping Weight Ibs[kg]	1015[460]	1453[659]	1843[836]	3195[14	49]	3847[1745]	3872[1756]	5023[2279]	5048[2290]
Operating Weight Ibs[kg]	1020[463]	1465[665]	1858[843]	3221[14	61]	3881[1760]	3911[1774]	5077[2303]	5101[2314]
Operating Charge R410A Ibs[kg]	24[11]	51[23]	77[35]	101[46] 1		128[58]	152[69]	168[76]	179[81]
Model ACDS	080	095	105	;	115	5	125	135	175
Model ACDS Unit Nominal Capacity TR[kW]	080 80.0 [281.4]	095 95.7 [336.0	105 6] 105.1 [3	69.6] 1 ⁴	115 15.1 [40	i 04.8] 130.	125 7 [459.7]	135 143.6 [505.0]	175 182.9 [643.3]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW	080 80.0 [281.4] 90.2	095 95.7 [336.0 111.9	105 6] 105.1 [3 121.	69.6] 1 ⁷ 6	115 15.1 [40 134.9	5 04.8] 130. 9	125 7 [459.7] 150.3	135 143.6 [505.0] 169.0	175 182.9 [643.3] 216.6
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER K	080 80.0 [281.4] 90.2 10.64	095 95.7 [336.0 111.9 10.26	105 6] 105.1 [3 121. 121.	69.6] 1 ⁴ 6 7	115 15.1 [40 134.9 10.23	04.8] 130. 9 2 3 2	125 7 [459.7] 150.3 10.44	135 143.6 [505.0] 169.0 10.20	175 182.9 [643.3] 216.6 10.13
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER	080 80.0 [281.4] 90.2 10.64	095 95.7 [336. 111.9 10.26	105 6] 105.1 [3 121. 121. 0.3 0.3	69.6] 1 ⁷ 6 7 7 OR	115 15.1 [40 134.9 10.23	04.8] 130. 9 2 3 2	125 7 [459.7] 150.3 10.44	135 143.6 [505.0] 169.0 10.20	175 182.9 [643.3] 216.6 10.13
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Nin % Unit Connection	080 80.0 [281.4] 90.2 10.64	095 95.7 [336. 111.9 10.26	105 6] 105.1 [3 121. 10.3 COMPRESS	69.6] 1 ² 6 7 0 R	115 15.1 [40 134.9 10.23 2900	04.8] 130. 9 - 3 - 0 -	125 7 [459.7] 150.3 10.44	135 143.6 [505.0] 169.0 10.20	175 182.9 [643.3] 216.6 10.13
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Poficies and Circuit	080 80.0 [281.4] 90.2 10.64 25%	095 95.7 [336.] 111.9 10.26	105 6] 105.1 [3 121. 10.3 COMPRESS	69.6] 11 6 7 OR	115 15.1 [40 134.9 10.23 2900 16.70	5 130. 9 7 3 7 0 0%	125 7 [459.7] 150.3 10.44 6.70%	135 143.6 [505.0] 169.0 10.20 16.70%	175 182.9 [643.3] 216.6 10.13 16.70%
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit	080 80.0 [281.4] 90.2 10.64 25% 2	095 95.7 [336.] 111.9 10.26 25% 2	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2	69.6] 11 6 7 OR 0%	115 15.1 [4(134.9 10.23 2900 16.70 2	i 04.8] 130. 9 - - 3 - - 0 - - 0% 1 -	125 7 [459.7] 150.3 10.44 6.70% 2	135 143.6 [505.0] 169.0 10.20 16.70% 2	175 182.9 [643.3] 216.6 10.13
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit	080 80.0 [281.4] 90.2 10.64 25% 2 2	095 95.7 [336.1 111.9 10.26 25% 2 25% 2	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT	69.6] 1 ² 6 7 0R 0% 0%	115 15.1 [40 134.9 10.23 2900 16.70 2	5 04.8] 130. 9 2 2 3 2 2 0 0 1 0% 1 1	125 7 [459.7] 150.3 10.44 6.70% 2 104.61	135 143.6 [505.0] 169.0 10.20 16.70% 2 4(401.6)	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70%
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USram[m2/r]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6]	095 95.7 [336.4 111.9 10.26 25% 2 2 3[76.2] 229 7[52.2]	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101] 21.2	69.6] 11 6 7 OR 0% 0% 0% 0%	115 15.1 [4(134.9 10.23 2900 16.70 2 4[101. 276 2[6	5 130. 9 - 3 - 0 - 0% 1 .6] 4[\$2,7] 312	125 7 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3 7[71, 2] 3 7[71, 2]	135 143.6 [505.0] 169.0 10.20 16.70% 2 4[101.6] 344.6[78.3]	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ff wolf/Pa1	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1]	095 95.7 [336.4 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2]	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101 2] 2] 252.2 [5 1 8.4 [2]	i 69.6] 1' 6 7 0 R 0 R	115 15.1 [4(134.9 10.23 2900 16.70 2 4[101. 276.2[6 9.9[29	i i 04.8] 130. 9 i 3 i 0 i 00% 1 6] 4[52.7] 313 66] 1	125 7 7 [459.7] 150.3 100.44 0.44 6.70% 2 101.6] 3.7[71.2] 2(33.5) 2	135 143.6 [505.0] 169.0 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8]	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/ 484.0	095 95.7 [336.4 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/551	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 2 EVAPORAT 4[101 2] 252.2 [5] 8.4 [25 .0 210.0/ 5	i 69.6] 1' 6 7 7 0 R 0 R 0 R 6] 0 57.3] 2 5.1] 2	115 15.1 [40 134.9 10.23 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/ 5	i i 04.8] 130. 9 3 0 00% 1 <t< th=""><th>125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] .0/ 550.0</th><th>135 143.6 [505.0] 169.0 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0</th><th>175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0</th></t<>	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] .0/ 550.0	135 143.6 [505.0] 169.0 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m ³ /hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m ³ /hr]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5(67.7	095 95.7 [336.4 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/551 [42.0/125. 9.8/66.2	105 6] 105.1 [3 121. 10.3 COMPRESS 16.70 2 EVAPORAT 4[101 2] 252.2 [5] 8.4 [25] 0 210.07 5 1 47.77 1 47.77 1 50.02	i 69.6] 1' 6 7 0 R 0 R 0 R 0 R 57.3] 2 5.1] 2 5.1] 2 20.0 2 18.1] [4	115 15.1 [40 134.5 10.23 2900 16.70 2 4[101. 276.2[6 9.9[29 110.0/5 47.7/11	i i 04.8] 130. 9 - 3 - 0 - 00% 1 .6] 4[.62.7] 313 .63.11 - .64.11 - .65.11 - .66.11 - .67.13 -	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 8/ 124.9] 2/21.6	135 143.6 [505.0] 169.0 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.2/21.6	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/141.0] 6.0/22.1
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/ 484.0 [36.6/ 1099] 7.5/ 57.7 [22.4/ 172.5]	095 95.7 [336.4 111.9 10.26 25% 2 229.7[52.2 13.1[39.2 185.0/ 551 [42.0/1251 [42.0/1251 [42.0/1251 [42.0/1351]	105 6] 105.1 [3 121. 10.3 COMPRESS 16.70 2 10.3 EVAPORAT 4[101 2] 252.2 [5] 8.4 [25 .0 210.0 f ± 1] [47.77] 1 6.0/3 9]	i 11 69.6] 11 6 7 OR 00 00% 00 00% 00 57.3] 2 55.1] 120.0 120.0 2 18.1] 14 55.9] [115 15.1 [40 134.9 10.23 2900 16.70 2 4[101. 276.2[6 9.9[29 210.0/ 5 47.7/ 11 6.0/ 32 [17.9/ 9	i i 04.8] 130. 9 - 3 - 0 - 00% 1 .6] 4[.62.7] 313 .63.11 - .60.271 313 .61.31 11 .20.01 2500 18.11 [567] .2.1 77 .55.91 [21]	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] 0/ 550.0 8/ 124.9] 3/ 31.6 8/ 94.5]	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5]	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5/57.7 [22.4/172.5]	095 95.7 [336.1 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/551 [42.0/125. 8.8/66.2 [26.3/197.	105 6] 105.1 [3 103.1 [3] 121. 10.3 103. COMPRESS 16.7 2 EVAPORAT 4[101 2 2 252.2 [5] 3.8.4 [24] 0 1 21.0.7 5 1 (47.7/1) 2 6.0/3 3 9] [17.9/5] CONDENSI 11	69.6] 11 6 7 OR 07 08 6 5 5 7.3] 2 5.1] 5 5.1] 5 20.0 2 18.1] [4 2.1 5 5.9] [8	115 15.1 [40 134.9 10.23 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/5 47.7/11 6.0/32 [17.9/9	i i 04.8] 130. 9 - 3 - 0 - 0% 1 .6] 4[.2.7] 313 .6.6] 11 .52.7] 313 .6.6] 11 .52.0 2500 18.1] [56.5] .2.1 7. .55.9] [21	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] .0/ 550.0 8/ 124.9] 3/31.6 .8/ 94.5]	135 143.6 [505.0] 169.0 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5]	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5/57.7 [22.4/172.5]	095 95.7 [336.0 111.9 10.26 25% 2 229.7[52.2 13.1[39.2 13.50/551 [42.0/125. 8.8/66.2 [26.3/197.	105 6] 105.1 [3 102.1 [3] 121. 103.3 COMPRESS COMPRESS 16.7 EVAPORAT 2 2 EVAPORAT 2] 252.2 [6] 3.4 [24] 0.2 (210.0 f) 1] [47.77] 2 20.0 f) 1] [47.77] 2 6.0/3.3 9] [17.9/9] CONDENSI 3 3] 188.2[1	i 1° 69.6] 1° 6 7 OR 000000000000000000000000000000000000	115 15.1 [4(134.5 10.2; 2900 16.70 2 4[101. 276.2[6 9.9[29 210.0/ 5 47.7/ 11 6.0/ 32 [17.9/ 9 188.2[1	i i 04.8] 130. 9 - 3 - 0 - 0% 1 .6] 4[.2.7] 313 0.6] 11 .520.0 250 18.1] [56] 2.1 7 7.4] 235	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] 0/ 550.0 8/ 124.9] 3/31.6 8/ 94.5]	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 235.3[21.9]	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5/57.7 [22.4/172.5] 133.0[12.4] 60900 [103470]	095 95.7 [336.0 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/551 [42.0/125. 8.8/66.2 [26.3/197. 177.3[16.8 81200 [13.7960]	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101 2] 2 252.2 [6] 1 8.4 [28] 0 210.07 § 1 [47.77 1] 6.0/3 3 9] 188.2[14 8240 13 188.2[1300	i 11 69.6] 11' 6 7 OR 00 000 10 0000 10 0000 10 0000 2 5.11 10 55.9] [57.4] 1 100 28]	115 15.1 [4(134.5 10.2; 2900 16.70 2 4[101. 276.2[6 9.9][29 210.0/5 4[17.9/9 188.2[1 8240 [13990	i i 04.8] 130. 9 - 3 - 0 - 0% 1 0 - 0% 1 .6] 4[32.7] 313 3.6] 11 1520.0 250 2.1 7. 7.5.9] [21 7.4] 235 00 1 981 11	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 &/ 124.9] 3/ 31.6 8/ 94.5] 5.3[21.9] 03000 749981	135 143.6 [505.0] 169.0 10.20 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 235.3[21.9] 103000 10.70300 11749881	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan cfm[m³/hr]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5/57.7 [22.4/172.5] 133.0[12.4] 60900 [103470] 6	095 95.7 [336.0 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/55 13.4[39.2 185.0/55 8.8/66.2 [26.3/197. 177.3[16.8 81200 [137960] 8	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 EVAPORAT 12 2 252.2 [5] 3 245.2 [2] 1 21.0.0 5 1 21.7.7 1 6.0/3.9 [17.9/5] CONDENSI 33 3 188.2[1 8240 [1399] 8 8240	i 11 69.6] 11 6 7 OR 0 09% 1 09% 1 5.1 2 5.1 2 5.1 14 21.1 14 21.1 14 21.1 14 21.1 14 21.1 14 22.0.0 2 88] 1	115 15.1 [4(134.5] 10.2; 2900 16.70 2 4[101. 276.2[6 9.9[29 210.0/5 4[7.7/11] 6.0/32 [17.9/9 188.2[1] 8240 [13993 8	i i 04.8] 130. 9 - 3 - 0 - 0% 1 0% 1 .6] 4[.2.7] 313 .6] 11 .52.7] 313 .6] 11 .52.0 250 .59] [21 7.4] 235 .00 1 .98] [1]	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 & 124.9] 3/ 31.6 8/ 94.5] 5.3[21.9] 03000 74998] 10	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/550.0 [56.8/124.9] 7.3/31.6 [21.8/94.5] 235.3[21.9] 103000 [174998] 10	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Fan Motor kW Input (Qty)	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5/57.7 [22.4/172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6)	095 95.7 [336.1 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/55] 185.0/55 8.8/66.2 [26.3/197. 177.3[16.8 81200 [137960] 8 8 1.56 (8)	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 EVAPORAT 12 2 252.2 [5] 8.4 [24]] 252.2 [5] 8.4 [24]] 10.7.7 1 (a) 6.0/3.3 9] [17.9/5] CONDENSI 82400 [1399] 8 8 1.56	i 11 69.6] 11 6 7 OR 00 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 5.01 2 5.11 2 5.20.0 2 88.11 [4 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14 2.1 14	115 15.1 [4(134.5 10.2; 2900 16.70 2 4[101. 276.2[6 9.9[29 210.0/5 44[7.7/11] 6.0/32 [17.9/9 188.2[1] 8240 [13999 8 1.56 (i i 04.8] 130. 9 - 3 - 0 - 0% 1 0% 1 .6] 4[32.7] 313 .6] 11 .52.7] 313 .6] 11 .52.7] 313 .6] 11 .52.7] 313 .6] 11 .52.7] 231 .53.9] [21 7.4] 235 .00 1. .98] [1] .68) 1.4	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] .0/ 550.0 & 124.9] 3/ 31.6 8/ 94.5] 5.3[21.9] 003000 74998] 10 56 (10)	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/550.0] 7.3/31.6 [21.8/94.5] 235.3[21.9] 103000 [174998] 10 1.56 (10)	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [20998] 12 1.56 (12)
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Fan FLA , Amp (Qty)	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6/109.9] 7.5/57.7 [22.4/172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6)	095 95.7 [336.1 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/552 185.0/552 185.0/52 8.8/66.2 [26.3/197. 177.3[16.8 81200 [137960] 8 1.56 (8) 4.0 (8)	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101] 2 2 252.2 [5] 8.4 [25] 8.4 [25] 10.7.7 1 (6.0/3) 9] [17.9/5] CONDENSI [3] 188.2[1 82400 [1399 8 1.56 4.0 (5) 4.0 (5)	i 11 69.6] 11' 6 7 OR 00 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 5.11 0 520.0 2 88.1] 14 21.1 14 22.1 14 23.1 14 24.1 14 25.9] [ER 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14 00 14	115 15.1 [4(134.5] 10.2; 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/5 447.7/11 6.0/32 [17.9/9] 188.2[1 8240 [13999 8 1.56 (4.0 (§	i i 04.8] 130. 9 - 3 - 0 - 0% 1 0% 1 .6] 4[.27.7] 313 .6] 11 .52.0.1 250.0 .21.1 7. .75.9] [21 7.4] 235 .00 1 .98] 1 .98] 1 .80 4	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 23.5] .0/ 550.0 &/ 124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 003000 74998] 10 56 (10) 0 (10)	135 143.6 [505.0] 169.0 10.20 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0 / 550.0 [21.8/ 94.5] 235.3[21.9] 103000 [174998] 10 1.56 (10) 4.0 (10)	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12)
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Fan FLA , Amp (Qty)	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6' 109.9] 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6)	095 95.7 [336.1 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/551 [42.0/125. 8.8/66.2 [26.3/197. 177.3[16.6 81200 [137960] 8 1.56 (8) 4.0 (8)	105 6] 105.1 [3 121. 10.3 COMPRESS 16.70 2 EVAPORAT 4[101 2 2 252.2 [5] 3 8.4 [24] 1 [47.77] 3 188.2 [1 5 CONDENSI 83 188.2 [1 88 1.56 [4.0 (r GENERAL	i 11 69.6] 11' 6 7 OR 000 00%	115 15.1 [4(134.9 10.2; 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/5 47.7/11 6.0/32 [17.9/9 188.2[1] 8240 [13996 8 1.56 (4.0 (8)	i i 004.8] 130. 9 - 33 - 0 - 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 01% 1 020.0 2500 10% 1 00% 1 00% 1 00% 1 01% 1 020.0 1 038 1 038 4	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 23.5] 0/ 550.0 8/ 124.9] 3/ 31.6 8/ 94.5] 5.3[21.9] 030000 74998] 10 56 (10) 0 (10)	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0 / 550.0] 7.3/ 31.6 [21.8/ 94.5] 103000 [174998] 10 1.56 (10) 4.0 (10)	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12)
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Unit Length	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6' 109.9] 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6) 151 1/2[3850]	095 95.7 [336.4] 111.9 10.26 25% 2 3[76.2] 229.7[52.2] 13.1[39.2] 185.0/551 [42.0/125.8.8/66.2] [26.3/197.3] 177.3[16.8 81200 [137960] 8 1.56 (8) 4.0 (8) 192[4880	105 6] 105.1 [3 121. 10.3 COMPRESS 16.70 2 EVAPORAT 4[101 2 2 22.2 [5 3 8.4 [24 1 6.70 3 9] [17.9 9 CONDENSIS 8240 [1399] 8 1.56 6 4.0 (7 GENERAL 4.0 (7	i 69.6] 11 669.6] 17 7 0 OR 0 0% 0 08.6] 0 57.3] 2 5.4] 1 520.0 2 5.4] [42 2.1 [5.5] 55.9] [6] 988] 0 988] 0 80 1 4710] 18	115 15.1 [44 134.9 10.23 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/5 47.7/11 6.0/32 [17.9/9 188.2[1] 8240 [13995 8 1.56 (4.0 (8 85 1/2[4	i i 04.8] 130. 9 - 3 - 0 - 00% 1 0 - 00% 1 150 4[32.7] 313 30.6] 11 520.0 2500 25.9] [21] 7.4] 235 98] [1] 98] [1] 88) 4. 4710] 228	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 %124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 003000 74998] 10 56 (10) 0 (10)	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 103000 [174998] 10 1.56 (10) 4.0 (10)	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12) 270 1/2[6870]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Unit Length Unit Width inches[mm]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6' 109.9] 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6) 151 1/2[3850] 89[2260]	095 95.7 [336.] 111.9 10.26 25% 2 3[76.2] 229.7[52.2 13.1[39.2 185.0/551 [42.0/125. 8.8/66.2 [26.3/197. 177.3[16.8 81200 [137960] 8 1.56 (8) 4.0 (8) 192[4880 89[2260]	105 6] 105.1 [3 121. 10.3 COMPRESS 16.70 EVAPORAT 4[101 2] 252.2 [5] 8.4 [25 0 210.0/ 5 1 [47.77] 3] 188.2 [1 6.07.33 8240 [1399] 8 1.56 [4.0 (7) GENERAL 4.0 (7) 3] 185.1/2[38 1.56 [4.0 (7) 39/22	i 11° 69.6] 11° 6 7 OR 00% 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 5.0] 0 20.0 2 88.1] 14 21.1 14 22.0 2 88 0 983 0 80 0 L 4710] 18 60] 0	115 15.1 [4(134.9 10.2; 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/5 47.7/11 6.0/32 [17.9/9 188.2[1 8240 [13996 8 1.56 (4.0 (8 85 1/2[4 89]226	i i 004.8] 130. 9 - 3 - 0 - 00% 1 0 - 00% 1 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 11 520.0 250 221 7. 7.4] 235 00 11 98] [1] 98] 1.1 8) 4. 4710] 228 60] 85	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] 0/ 550.0 8/ 124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 030000 74998] 10 56 (10) 0 (10) 1/2[5800] 2/2260]	135 143.6 [505.0] 169.0 10.20 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/550.0 56.8/124.9] 7.3/31.6 [21.8/94.5] 10 1.56 (10) 4.0 (10) 288 1/2[5800] 89[2260]	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12) 270 1/2[6870] 89[2260]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Unit Length Unit Width inches[mm] Unit Height inches[mm]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6' 109.9] 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6) 151 1/2[3850] 89[2260] 93 1/2[2380]	095 95.7 [336.1] 111.9 10.26 25% 2 3[76.2] 229.7[52.2] 13.1[39.2] 185.0/551 [42.0/125. 8.8/66.2 [26.3/197. 177.3[16.6] 81200 [137960] 8 1.56 (8) 4.0 (8) 192[4880 89[2260] 93 1/2[238	105 6] 105.1 [3 121. 10.3 COMPRESS 16.70 2 EVAPORAT 4[101 2 2 252.2 [5] 3.4 [22] 252.2 [5] 1 [47.77] 3] 188.2 [1 6.07.3 [17.9 [5] CONDENSIS 3] 188.2 [1 8 [1.399] 8 1.56 [i 11° 669.6] 11° 6 7 OR 00% 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 00% 0 5.0] 0 20.0 2 88.1] 14 21.1 12 142.1 14 100 9 983 9 14 11 100 12 11 12 12 12 130 14 140 14 15.9] 12 140 14 15.9] 12 140 14 15.9] 12 16 14 17 14 18 14 14 14 15 14	115 15.1 [4(134.9 10.2; 2900 16.70 2 4[101. 276.2[6 9.9]29 210.0/5 47.7/11 6.0/32 [17.9/9 188.2[1 8240 [13996 8 1.56 (4.0 (8 85 1/2[4 89[226 98[245]	i i 004.8] 130. 9 - 3 - 0 - 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 1520.0 2500 221 7. 7.4] 235 00% 1 98] [1] 98] [1] (8) 1.4 4710] 228 60] 85 90] 98	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] 2[33.5] 0/ 550.0 % 124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 03000 74998] 10 56 (10) 0 (10) 1/2[5800] 2/2260] 9/2260]	135 143.6 [505.0] 169.0 10.20 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/550.0 56.8/124.9] 7.3/31.6 [21.8/94.5] 103000 [174998] 10 1.56 (10) 4.0 (10) 228 1/2[5800] 89[2260] 98[2490]	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12 1.26 (12) 4.0 (12) 270 1/2[6870] 89[2260] 98[2490]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Unit Length inches[mm] Unit Width inches[mm] Unit Height inches[mm] Shipping Weight lbs[kg]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6' 109.9] 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6) 151 1/2[3850] 89[2260] 93 1/2[2380] 5291[2400]	095 95.7 [336.4] 111.9 10.26 25% 2 3[76.2] 229.7[52.2] 13.1[39.2] 185.0/551 [42.0/125. 8.8/66.2 [26.3/197.3] 177.3[16.8 81200 [137960] 8 1.56 (8) 4.0 (8) 192[4880 89[2260] 93 1/2[238 6677[3025	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101 2 2 252.2 [5 3 8.4 [25 1 6.0/ 3 9] [17.9 (5 CONDENSI 8 3] 188.2[1 8 1.56 (4) 4.0 (6 GENERAL 1 185 1/2[- 89[220 0] 98[24:4] 0] 98[24:4] 0] 98[24:4] 0] 98[24:4]	i 11 69.6] 11 6 7 OR 10 00% 10 00% 10 00% 10 00% 10 00% 10 57.3] 2 55.1] 12 120.0 2 18.1] [4] 22.1 [5.5] 55.9] [5] ER 11 100 98] 98] 11 10 12 10 14 10 14 10 14 10 14 10 14 10 14 10 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14 11 14	115 15.1 [4(134.9 10.2; 2900 16.70 2 4[101. 276.2[6 9.9[29 210.0/5 47.7/11 6.0/32 17.9/9 188.2[1] 8240 [13999 8 1.56 (4.0 (8 85 1/2[4 89[226 98[249] 66789[30	i i 004.8] 130. 9 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 0 0 0 11 520.0 2500 221 7. 7.4] 235 900 11 98] [1] 98] [1] 98] 1 98] 1 4710] 228 60] 85 90] 98 903 98	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 %124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 030000 74998] 10 56 (10) 0 (10) 1/2[5800] 2/2260] 9/2260] 56[3704]	135 143.6 [505.0] 169.0 10.20 10.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 235.3[21.9] 103000 [174998] 10 1.56 (10) 4.0 (10) 228 1/2[5800] 89[2260] 98[2490] 8521[3865]	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12) 270 1/2[6870] 89[2260] 98[2490] 98[2490]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m³/hr] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Unit Length inches[mm] Unit Width inches[mm] Unit Height inches[mm] Shipping Weight lbs[kg] Operating Weight lbs[kg]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6' 109.9] 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6) 151 1/2[3850] 89[2260] 93 1/2[2380] 5291[2400] 5350[2427]	095 95.7 [336.4] 111.9 10.26 25% 2 3[76.2] 229.7[52.2] 13.1[39.2] 185.0/551 [42.0/125. 8.8/66.2 [26.3/197.3]16.8 81200 [137960] 8 1.56 (8) 4.0 (8) 192[4880 89[2260] 93 1/2[238 6677[3025 6750[3062	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101 2 252.2 [5 3.4 [25 1 6.7/3 9] [17.9/5 CONDENSI 8.82[4 [1399] 8 1.56 (1399) 8 1.56 (240) 4.0 (0 GENERAL 1.85 1/2[- 1 185 1/2[- 98[22] 0] 0] 98[24] 2] 6.749[3] 2] 6.8242[3]	i 11 69.6] 11 6 7 OR 11 00 11 00 11 00 2 57.3] 2 57.3] 2 55.9] [1] 22.0 2 55.9] [5.5.9] ER 11 10 98] 88) 8 47710] 18 60] 90 901] 6 902] 6	115 15.1 [4(134.9 10.2; 2900 16.7(2 4[101. 276.2[6 9.9[29 210.0/5 47.7/11 6.0/32 17.9/9 188.2[1] 8240 [13999 8 1.56 (4.0 (8 85 1/2[4 89[226 98[249 66789[30 6863[31]	i i 04.8] 130. 9 - 3 - 0 - 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 00% 1 01% 1 02% 1 03% 1 04% 1 05% 4 01% 228 02% 9 020% 94 030% 816 113] 828	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 %124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 030000 74998] 10 56 (10) 0 (10) 1/2[5800] 2/2260] 9/2260] 9/2260] 3(3757]	135 143.6 [505.0] 169.0 10.20 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 235.3[21.9] 103000 [174998] 10 1.56 (10) 4.0 (10) 228 1/2[5800] 89[2260] 98[2490] 8521[3865] 8638[3918]	175 182.9 [643.3] 216.6 10.13 16.70% 2 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 2 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12) 270 1/2[6870] 89[2260] 98[2490] 9777[4435] 9940[4509]
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m³] No Of Fan Fan Motor kW Input (Qty) Fan FLA , Amp (Qty) Unit Length inches[mm] Unit Width inches[mm] Unit Height inches[mm] Shipping Weight lbs[kg] Operating Weight lbs[kg] Operating Charge R410A lbs[kg]	080 80.0 [281.4] 90.2 10.64 25% 2 3[76.2] 192.0[43.6] 10.4[31.1] 161.0/484.0 [36.6'109.9] 7.5/57.7 [22.4/172.5] 133.0[12.4] 60900 [103470] 6 1.56 (6) 4.0 (6) 93 1/2[2380] 5291[2400] 5350[2427] 203[92]	095 95.7 [336.4] 111.9 10.26 25% 2 3[76.2] 229.7[52.2] 13.1[39.2] 185.0/551 [42.0/125. 8.8/66.2 [26.3/197.3] 8.8/66.2 [137960] 8 1.56 (8) 4.0 (8) 192[4880 89[2260] 93 1/2[238 6677[3025 6750[3062 229[104]	105 6] 105.1 [3 121. 10.3 COMPRESS 16.7 2 EVAPORAT 4[101 2 2 252.2 [5 3 8.4 [25 0 210.0/ 5 1 [47.7/1] 9] [17.9/ 5 CONDENSI 8 2 8.8240 [1399 8 1.56 (4.0 () GENERAL 89[22 0] 185 1/2[- 89[22 0] 0] 98[24 9] 6749[3] 2] 68223 2] 68223 2] 68223	i 11 69.6] 11 6 7 OR 11 00 11 00 11 00 2 57.3] 2 57.3] 2 57.3] 2 55.9] [1] 22.1 [2] 55.9] [5] 58] 2 88) 2 88) 2 900] 11 900] 2 900] 6 900] 6 17] 17	115 15.1 [4(134.9 10.2: 2900 16.70 2 4[101. 276.2[6 9.9[29 210.0/5 47.7/11 6.0/32 17.9/9 188.2[1] 8240 [13999 8 1.56 (4.0 (8 85 1/2[4 89[226 98[245 6789[30 6863[31] 284[12	i i 04.8] 130. 9 - 3 - 0 - 00 - 00 - 00 - 00 11 52.7] 313 3.6] 11 520.0 2500 221 7. 7.4] 235 98] [1] 98] [1] 98] 1 4710] 228 60] 85 90] 98 90] 98 113] 826 229] 32	125 7 [459.7] 150.3 10.44 6.70% 2 101.6] 3.7[71.2] .2[33.5] .0/ 550.0 %124.9] 3/ 31.6 .8/ 94.5] 5.3[21.9] 030000 74998] 10 56 (10) 0 (10) 1/2[5800] 2/2260] 3(3757] 22[146]	135 143.6 [505.0] 169.0 10.20 10.20 16.70% 2 4[101.6] 344.6[78.3] 13.3[39.8] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 235.3[21.9] 103000 [174998] 10 1.56 (10) 4.0 (10) 228 1/2[5800] 89[2260] 98[2490] 8521[3865] 8638[3918] 342[155]	175 182.9 [643.3] 216.6 10.13 16.70% 2 4[101.6] 439.0[99.7] 16.9[50.5] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 2 282.3[26.2] 123600 [209998] 12 1.56 (12) 4.0 (12) 2701/2[6870] 89[2260] 98[2490] 9777[4435] 9940[4509] 441[200]

The above data are rated in accordance with AHRI Standard 550/590 with following conditions: Evaporator leaving fluid temperature 44°F with fluid flow rate 2.4 USgpm/ton; ambient temperature at 95°F; evaporator fouling factor 0.0001hr.ft².°F/Btu
 To consult nearest Dunham-Bush sales office for computer selections other than above operating conditions

PHYSICAL SPECIFICATIONS

60 Hz

Model ACDS	010	020	030	040	050		060	070	080			
Unit Nominal Capacity TR[kW]	10.0 [35.2]	23.1 [81.2]	29.0 [102.0]	46.4 [163	3.2] 57.4 [20	1.9]	67.3 [236.7]	77.9 [274.0]	87.2 [306.7]			
Unit Nominal Power Input kW	11.66	27.0	33.7	53.6	66.8	-	78.8	91.6	102.5			
EER	10.3	10.28	10.33	10.39	10.3	2	10.24	10.21	10.21			
			COMPRES	SOR								
RPM					3500							
Min. % Unit Capacity	100%	50%	50%	25%	25%	6	25%	25%	25%			
No. Of Refrigerant Circuit	1	1	1	2	2		2	2	2			
			EVAPOR/	TOR								
Water Connector inches[mm]	2 [50.8]	2.0 [50.8]	2.0 [50.8]	2.5[63.5	5] 2.5[63	.5]	2.5[63.5]	2.5[63.5]	2.5[63.5]			
Nominal Water Flow USgpm[m ³ /hr]	24.0 [5.4]	55.4 [12.6]	69.6 [15.8]	111.4 [25	5.3] 137.8 [3	1.3]	161.5 [36.7]	187.0 [42.5]	209.3 [47.5]			
Nominal Pressure Drop ft.wg[kPa]	11.6 [34.7]	14.7 [43.9]	15.4 [46.0]	18.4 [55	.0] 18.0 [5	3.8]	19.0 [56.8]	14.3 [42.7]	15.2 [45.4]			
Min/Max. Water Flow USgpm[m ³ /hr]	23.0/73.0	42.0/131.0	53.0/ 161.0	72.0/216	6.0 90.0/27	72.0	116.0/351.0	121.0/363.0	136.0/410.0			
Min/Max. Water Pressure Drop	11.1/93.7	8.8/72.4	9.3/ 72.7	8.2/ 62.	.7 8.2/63	3.2	10.3/ 80.0	6.4/48.9	6.8/ 52.6			
ft.wg[kPa]	[33.2/ 280.1]	[26.3/ 216.4]	[27.8/ 217.3	[24.5/ 18]	7.4] [24.5/ 18	38.9]	[30.8/ 239.1]	[19.1/146.2]	[20.3/ 157.2]			
		1	CONDEN	SER				1				
Total Face Area ft ² [m ²]	21.1[2.0]	40.6[3.8]	47.1[4.4]	94.1[8.7	7] 94.1[8	.7]	94.1[8.7]	94.1[8.7]	133.0[12.4]			
Total Air Flow cfm[m ³ /hr]	9000 [15290]	24800 [42135]	24100 [40946]	51200 [86989) 4820 9] [8189	0 2]	48200 [81892]	48200 [81892]	71100 [120800]			
No Of Fan	1	2	2	4	4	-	4	4	6			
Motor kW ^I (Qty)	1.40 (1)	2.40 (2)	2.40 (2)	2.40 (4	4) 2.40 (4)	2.40 (4)	2.40 (4)	2.40 (6)			
Fan FLA , Amp (Qty)	2.2 (1)	4.0 (2)	4.0 (2)	4.0 (4)) 4.0 (4	4)	4.0 (4)	4.0 (4)	4.0 (6)			
			GENER	AL	÷							
Unit Length inches[mm]	60 5/8[1540]	99[2510]	99[2510]	115 3/4[29	940] 115 3/4[2	2940]	115 3/4[2940]	115 3/4[2940]	151 1/2[3850]			
Unit Width inches[mm]	49 1/4[1250]	49 1/4[1250]	52 3/4[1340	89[2260	0] 89[226	60]	89[2260]	89[2260]	89[2260]			
Unit Height inches[mm]	73 3/4[1880]	74 5/8[1900]	88 1/2[2250	87 1/2[22	220] 87 1/2[2	220]	87 1/2[2220]	87 1/2[2220]	93 1/2[2380]			
Shipping Weight Ibs[kg]	947[430]	1449[657]	1843[836]	3177[144	41] 3829[17	737]	3872[1756]	3897[1768]	5033[2292]			
Operating Weight Ibs[kg]	952[432]	1461[663]	1858[843]	3203[14	53] 3863[17	752]	3911[1774]	3936[1786]	5106[2316]			
Operating Charge R410A Ibs[kg]	24[11]	51[23]	77[35]	101[40	6] 128[58]	152[69]	179[81]	203[92]			
		100			105		150		100			
Model ACDS	090	100		120	135		150	165	180			
Model ACDS Unit Nominal Capacity TR[kW]	090 96.8 [340.4	100] 108.8 [38	82.6] 118.	120 8 [417.8]	135 131.1 [461.1]	14	150 5.5 [511.7]	165 162.1 [570.1]	180 179.2 [630.2]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW	090 96.8 [340.4 114.0	100 -] 108.8 [38 126.7	82.6] 118. 7 -	120 8 [417.8] 39.0	135 131.1 [461.1] 151.2	14	150 5.5 [511.7] 167.0	165 162.1 [570.1] 188.2	180 179.2 [630.2] 206.0			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER	090 96.8 [340.4 114.0 10.19	100 108.8 [38 126.7 10.30	82.6] 118. 7 · ·	120 3 [417.8] 39.0 0.25	135 131.1 [461.1] 151.2 10.41	14	150 5.5 [511.7] 167.0 10.45	165 162.1 [570.1] 188.2 10.34	180 179.2 [630.2] 206.0 10.44			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER PRM	090 96.8 [340.4 114.0 10.19	100] 108.8 [34 126.3 10.30	82.6] 118. 7 7 0 COMPRES	120 8 [417.8] 39.0 0.25 SOR	135 131.1 [461.1] 151.2 10.41	14	150 5.5 [511.7] 167.0 10.45	165 162.1 [570.1] 188.2 10.34	180 179.2 [630.2] 206.0 10.44			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min % Unit Capacity	090 96.8 [340.4 114.0 10.19	100] 108.8 [34 126.] 10.3(82.6] 118. 7 2 0 2 COMPRES	120 3 [417.8] 39.0 0.25 SOR	135 131.1 [461.1] 151.2 10.41 3500 16.7%	14	150 5.5 [511.7] 167.0 10.45	165 162.1 [570.1] 188.2 10.34	180 179.2 [630.2] 206.0 10.44			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerent Circuit	090 96.8 [340.4 114.0 10.19	100] 108.8 [34 126. ⁻ 10.30 259 2	82.6] 118. 7 / / 0 / / COMPRES	120 3 [417.8] 39.0 0.25 SSOR 25% 2	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2	14	150 5.5 [511.7] 167.0 10.45	165 162.1 [570.1] 188.2 10.34 16.7% 2	180 179.2 [630.2] 206.0 10.44 16.7% 2			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit	090 96.8 [340.4 114.0 10.19 25% 25% 2	100 108.8 [3] 126.1 10.30 259 2	82.6] 118. 7 COMPRES 6 EVAPOR	120 3 [417.8] 39.0 0.25 SSOR 25% 2 TOR	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2	14	150 5.5 [511.7] 167.0 10.45 16.7% 2	165 162.1 [570.1] 188.2 10.34 10.34 16.7% 2	180 179.2 [630.2] 206.0 10.44 16.7% 2			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm]	090 96.8 [340.4 114.0 10.19 25% 2 2 5(63.5]	100] 108.8 [3i 126.1 126.2 200 259 2 2 2 2	82.6] 118. 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120 3 [417.8] 39.0 0.25 SSOR 25% 2 TOR 563.51	135 131.1 [461.1] 151.2 10.41 <u>3500</u> 16.7% 2 4 0[101.6]		150 5.5 [511.7] 167.0 10.45 16.7% 2 10[101.6]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4 0[101.6]	180 179.2 [630.2] 206.0 10.44 16.7% 2			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/h²]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 2.32.3 [52.8	100 108.8 [3i 126.7 10.30 259 2 2.5[63 0 261.1 [5	82.6] 118. 7 COMPRES 6 EVAPORA .5] 2 9.31 285	120 3 [417.8] 39.0 0.25 SSOR 25% 2 TOR 5[63.5] 1 [64.8]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5]	4	150 5.5 [511.7] 167.0 10.45 16.7% 2 10[101.6] 49.2 [79.3]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER kW RPM Min. % Unit Capacity No. Of Refrigerant Circuit kW Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2]	100 108.8 [3] 126.7 10.30 25% 2 2.5[63]	82.6] 118. 7 COMPRES 6 EVAPORA .5] 2. .5] 2. .5] 19.	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0]	14 14 4 34	150 5.5 [511.7] 167.0 10.45 16.7% 2 0.0[101.6] 49.2 [79.3] 5.3 [45.7]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/484.2	100 108.8 [3] 126.7 10.3 25% 2 2.5[63] 1] 261.1 [5] 18.4 [53] 0 161.0/4	82.6] 118. 7 - 0 - COMPRES % EVAPORA .5] 2 :9.3] 285 5.0] 19. 84.0 185	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0 1/ 102 10	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 (520.0) 210.0 (520.0)	14 14 4 34 1 21	150 5.5 [511.7] 167.0 10.45 16.7% 2 10.[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 72/449.41	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 (64.0)/ 621.0			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[m³/hr]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/484, [36.6/109.3 7.5] (57.7	100 108.8 [3] 126. 10.3 259 2 2.5[63]] 261.1 [5] 18.4 [53] 0 161.0/4 7.5/55	B2.6] 118. 7 - 0 - COMPRES % EVAPORA .5] 2 .9.3] 285 5.0] 19. 84.0 185 .9.9] [42 .7 8.	120 38 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 0/ 551.0 // 125.1] // 66.2	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 / 520.0 (47.7/ 118.1] 6.0/ 32.1	4 34 1 [4]	150 5.5 [511.7] 167.0 10.45 16.7% 2 .0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/ 520.0 7.7/ 118.1] 6.0/ 32.1	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa]	090 96.8 [340.4 114.0 10.19 25% 2 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/484. [36.6/109.8 7.5/57.7 [22.4/172.5]	100 108.8 [3] 126. 10.3 259 2 259 2 255 2 255 2 2.5[63 3] 261.1 [5] 18.4 [54] 0 161.0/4 7.5/57 [22.4/17	B2.6] 118. 7 - 0 - COMPRES % - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 6 7.7 8.7 7.6 7.7 7.7 7.7 7.7	120 39 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 0/ 551.0 // 125.1] 3/ 66.2 3/ 197.9]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 / 520.0 [47.7/118.1] 6.0/ 32.1 [17.9/ 95.9]	4 4 3 2 1 1 4 (1 1 4 (1)	150 5.5 [511.7] 167.0 10.45 16.7% 2 40.0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0'520.0 7.7/ 118.1] 6.0'32.1 7.9/ 95.9]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/484. [36.6/109.5 7.5/57.7 [22.4/172.5]	100 108.8 [3i 126 10.30 259 2 2.5[63 <	B2.6] 118. 7 - 0 - COMPRES - % - - - .5] 2. .9.3] 285 5.0] 19. 98.4.0 185 99.9] [42. 7.7 8. 72.5] [26. CONDEN -	120 39.0 0.25 SSOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 0/ 551.0 // 125.1] 3/ 66.2 3/ 197.9] SER	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 / 520.0 [47.7/118.1] 6.0/ 32.1 [17.9/ 95.9]	4 4 3 ² 1 1 [4] (1	150 5.5 [511.7] 167.0 10.45 16.7% 2 40.0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/95.9]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/484 [36.6/109.5 7.5/57.7 [22.4/172.5	100 108.8 [3i 126.1 10.30 259 2	B2.6] 118. 7 - 0 - COMPRES - % -	120 39.0 0.25 SSOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0 // 125.1] % 66.2 % 197.9] SER .3[16.5]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 / 520.0 (47.7/ 118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9]	44 34 11 14 10 11 11 12 11 14 11 12 11 12 12 12	150 5.5 [511.7] 167.0 10.45 16.7% 2 40.[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/ 520.0 7.7/ 118.1] 6.0/ 32.1 7.9/ 95.9] 35.6[21.9] 400000	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 244000	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 444000			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER RPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/ 484. [36.6/ 109.5 7.5/ 57.7 [22.4/ 172.5 133.0[12.4 71100 [120800]	100 108.8 [3i 126.1 10.30 259 2 2.5[63 3] 261.1 [5] 18.4 [5] 0 161.0/4 136.6/10 7.5/57 [22.4/17] 177.3[1 177.3[6100	82.6] 118. 7 7 0 7 COMPRES 6 6 1 7 2. 9.3] 285 5.0] 19. 984.0 185 99.9] [42. 7.7 8. 72.5] [26. CONDEN 6.5] 6.5] 177 0 5 36] [1]	120 3 [417.8] 39.0 0.25 SSOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 00 (551.0) // 125.1] 3/ 66.2 3/ 197.9] SER .3[16.5] 4800 11066]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730]	4 4 3 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 4	150 5.5 [511.7] 167.0 10.45 16.7% 2 49.2 [79.3] 5.3 [45.7] 0.0/ 520.0 7.7/ 118.1] 6.0/ 32.1 7.9/ 95.9] 35.6[21.9] 120500 [204730]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER K RPM Min. % Unit Capacity No. Of Refrigerant Circuit K Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan K	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/ 484. [36.6/ 109.9 7.5/ 57.7 [22.4/ 172.5] 133.0[12.4 71100 [120800] 6	100 108.8 [3] 126.7 10.30 259 2 25[63] 261.1 [5] 18.4 [5] 0 161.0/4 9] [36.6/10] 7.5/57 [37.3] 177.3[1 9480 [16100 8	82.6] 118. 7 7 0 7 COMPRES % EVAPORA .5] 2. .9.3] 285 5.0] 19. 84.0 185 19.9] [42. .7.7 8. .2.5] [26. CONDEN 6.5] 177 0 § § .66] [11	120 3 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 1(64.8] 5 5[8.6] 0/551.0 /125.1] /3(16.2) 3(16.5] 4800 51066] 8	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9 520.0 [204730] 120500 [204730] 10	4 4 3 4 3 4 1 1 1 1 1 1 4 1 1 1 2 1 1 4 1 4 1 4 1	150 5.5 [511.7] 167.0 10.45 16.7% 2 40.0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/59.9] 35.6[21.9] 120500 [204730] 10	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER K RPM Min. % Unit Capacity Mo. Of Refrigerant Circuit K Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Face Area ft²[m²] No Of Fan Motor kW ⁱ (Qty)	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484. [36.6/109.5] 7.5/57.7 [22.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6)	100] 108.8 [3] 126.7 10.30 259 2 2.5[63 2 2 2 2 2 10.30 10.30 2 2 2.5[63 2 11.1 18.4 [5] 11.1 18.4 [5] 11.1 136.6/10 7.5/57 [22.4/17] 3 177.3[1 9480 [16106 8 2.40 (82.6] 118. 7 7 0 7 COMPRES 6.5] 2. 99.3] 285 5.0] 19. 84.0 185 19.9] [42. 7.7 8. CONDEN 6.5] 6.5] 177 0 5 36] [11 8) 2.	120 3 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 164.8] 5 58.6] 0/551.0 /125.1] 3/66.2 3/16.5] 4800 51066] 8 40 (8)	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 520.0 [47.7/118.1] 6.0/ 32.1 [17.9 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10)	4 4 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150 5.5 [511.7] 167.0 10.45 16.7% 2 40.0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/ 520.0 7.7/ 118.1] 6.0/ 32.1 7.9/ 95.9] 35.6[21.9] 120500 [204730] 10 2.40 (10)	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12)	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [282.6[26.3] 144600 [245677] 12 2.40 (12)			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER K RPM Min. % Unit Capacity No. Of Refrigerant Circuit K Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW ⁱ (Qty) Fan FLA , Amp (Qty) Fan FLA , Amp (Qty)	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484. [36.6/109.5] 7.5/57.7 [2.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6) 4.0 (6)	100 108.8 [3] 126.7 10.30 259 2 2.5[63] 2 2 2 2 2 2 2 2 2 2 2 10.30 1	82.6] 118. 7	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 0/ 551.0 // 125.1] 9/ 66.2 // 197.9] SER .3[16.5] 4800 51066] 8 40 (8) .0 (8)	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9 5.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10)		150 5.5 [511.7] 167.0 10.45 10.45 16.7% 2 30(101.6] 49.2 (79.3) 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/95.9] 325.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10)	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12)	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12)			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER K RPM Min. % Unit Capacity Mo. Of Refrigerant Circuit K Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW ¹ (Qty) Fan FLA , Amp (Qty) Fan FLA , Amp (Qty)	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484. [36.6/109.5] 7.5/57.7 [22.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6) 4.0 (6)	100 108.8 [3] 126.7 10.3(1) 259 2 2.5[63] 2] 261.1 [5] 18.4 [5] 0 161.0/4 1 [36.6/10] 7.5/57 [2.2.4/17]] 177.3[1 9480 [16106 8 2.40 (82.6] 118. 7 - 0 - COMPRES - % - <tr< th=""><th>120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 0/ 551.0 // 125.1] 3/ 66.2 3/ 16.5] 4800 51066] 8 40 (8) 0. (8) AL</th><th>135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9 5.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10)</th><th></th><th>150 5.5 [511.7] 167.0 10.45 16.7% 2 10.101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/95.9] 35.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10)</th><th>165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12)</th><th>180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12)</th></tr<>	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 6 [58.6] 0/ 551.0 // 125.1] 3/ 66.2 3/ 16.5] 4800 51066] 8 40 (8) 0. (8) AL	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9 5.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10)		150 5.5 [511.7] 167.0 10.45 16.7% 2 10.101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/95.9] 35.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10)	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12)	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12)			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER KPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW¹ (Qty) Fan FLA , Amp (Qty) Unit Length	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484. [36.6/109.5] 23.4 [71.00] [120800] 6 2.40 (6) 4.0 (6)	100 108.8 [3] 126.7 10.3 2259 2 2.5[63] 2 2.5[63] 11.15 11.45 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.17.3[1 9480 [16106 8 2.40 (4.0 (£ 0] 192[48	82.6] 118. 7 - 0 - COMPRES - % - % - <th>120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0] // 125.1] // 66.2 // 97.9] SER .3[16.5] 4800 11066] 8 40 (8) .0 (8) AL 2[4880]</th> <th>135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 228 1/2[5800]</th> <th></th> <th>150 5.5 [511.7] 167.0 10.45 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.77/118.1] 16.0/32.1 10.79/50.0 120500 1204730] 10 2.40 (10) 4.0 (10) 8 1/2[5800]</th> <th>165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/124.9] 7.3/ 31.6 [21.8/94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 270 1/2[6870]</th> <th>180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 270 1/2[6870]</th>	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0] // 125.1] // 66.2 // 97.9] SER .3[16.5] 4800 11066] 8 40 (8) .0 (8) AL 2[4880]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 228 1/2[5800]		150 5.5 [511.7] 167.0 10.45 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.77/118.1] 16.0/32.1 10.79/50.0 120500 1204730] 10 2.40 (10) 4.0 (10) 8 1/2[5800]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/124.9] 7.3/ 31.6 [21.8/94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 270 1/2[6870]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 270 1/2[6870]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER kW RPM Min. % Unit Capacity No. Of Refrigerant Circuit kW Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW¹ (Qty) Fan FLA , Amp (Qty) Unit Length Unit Width inches[mm]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484. [36.6/109.5] 2.3(57.7) [2.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6) 4.0 (6) 151 1/2[385 89[2260]	100 108.8 [3] 126.7 10.3 259 2 2.5[63] 2 2.5[63] 11.15 11.45 11.5 11.66.67 11.67.57 11.77.3[1 9480 [16106 8 2.40 (4.0 (8 912[48 89[226	B2.6] 118. 7 - 0 - COMPRES - % - % - 6.5] 2 53.0] 19. 84.0] 185 99.9] [42. 7.7 8. 6.5] 177 0 6 36] [1] 8) 2. 3) 4 GENER 80] 19. 80] 19. 3	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0] / 125.1] 3/ 66.2 / 197.9] SER .3[16.5] 4800 1066] 8 40 (8) 0 (8) AL 2[4880] [2260]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 520.0 [47.77 (18.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 2.28 1/2[5800] 89[2260]		150 5.5 [511.7] 167.0 10.45 16.7% 2 .0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/95.9] 35.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 8 1/2[5800] 89[2260]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 89[2260]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 89[2260]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER KPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW ¹ (Qty) Fan FLA , Amp (Qty) Unit Length inches[mm] Unit Width inches[mm] Unit Height	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8 14.8 [44.2] 161.0/484. [36.6/109.3] 7.5/57.7 [2.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6) 4.0 (6) 151 1/2[385 89[2260] 93 1/2[2380]	100 108.8 [3] 126.7 10.3 259 2 2.5[63] 2 2.5[63] 11.15	B2.6] 118. 7	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0] / 125.1] 3/ 66.2 3/ 197.9] SER .3[16.5] 4800 11066] 8 40 (8) 0 (8) AL 2[4880] [2260] /2[2380]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0/ 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 228 1/2[5800] 89[2260] 98[2490]		150 5.5 [511.7] 167.0 10.45 10.45 16.7% 2 .0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0/520.0 7.7/118.1] 6.0/32.1 7.9/95.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 8 1/2[5800] 88[2260] 98[2490]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 89[2260] 98[2490]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [61.3/ 141.0] 6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 98[2260] 98[2490]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER KPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW ¹ (Qty) Fan FLA , Amp (Qty) Unit Length inches[mm] Unit Width inches[mm] Unit Height Unit Height inches[mm] Shipping Weight	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484, [36.6/109.3] 7.5/57.7 [2.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6) 4.0 (6) 93 1/2[2380 5292[2400	100 108.8 [3] 126.3 10.3 259 2 259 2 2559 2 2559 2 2559 2 2559 2 2559 2 2559 2 2551 261.1 [5 161.0 / 40 7555 [22.4/17 1 9480 [16106 8 2.40 (4.0 (8 89[226 0] 192[48 89[226 0] 93 1/2[2] 6441[25	B2.6] 118. 7	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0 // 125.1] 3/ 66.2 3/ 197.9] SER .3[16.5] 4800 11066] 8 40 (8) 0 (8) AL 2[4880] [2260] /2[23067]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.07 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 228 1/2[5800] 89[2260] 98[2490] 7776[3527]		150 5.5 [511.7] 167.0 10.45 16.7% 2 .0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0 / 520.0 7.7/ 118.1] 6.0/ 32.1 7.9/ 95.9] 35.6[21.9] 120500 (204730) 10 2.40 (10) 4.0 (10) 81/2[5800] 89[2260] 98[2490] 880[3575]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 98[2490] 9059[2109]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [6.9/ 32.1 [20.6/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 98[240] 9589[4350]			
Model ACDS Unit Nominal Capacity TR[kW] Unit Nominal Power Input kW EER KPM Min. % Unit Capacity No. Of Refrigerant Circuit Water Connector inches[mm] Nominal Water Flow USgpm[m³/hr] Nominal Pressure Drop ft.wg[kPa] Min/Max. Water Flow USgpm[m³/hr] Min/Max. Water Pressure Drop ft.wg[kPa] Total Face Area ft²[m²] Total Air Flow cfm[m³/hr] No Of Fan Motor kW ¹ (Qty) Fan FLA , Amp (Qty) Unit Length inches[mm] Unit Width inches[mm] Unit Height inches[mm] Unit Height inches[mm]	090 96.8 [340.4 114.0 10.19 25% 2 2.5[63.5] 232.3 [52.8] 14.8 [44.2] 161.0/484, [36.6/109.3] 7.5/57.7 [2.4/172.5] 133.0[12.4 71100 [120800] 6 2.40 (6) 4.0 (6) 93 1/2[2385 89[2260] 93 1/2[2386 5292[2400 5350[2427	100 108.8 [3] 126.3 10.3 259 2 259 2 2559 2 2559 2 2553 261.1 [5] 18.4 [53 0 161.0 / 40 7.5 [5] [22.4/ 17 1 177.3 [1 9480 [16100 8 2.40 (4.0 (8 0] 192[48 89[226 0] 93 1/2[2] 6441[25] 6509[25]	B2.6] 118. 7	120 3 [417.8] 39.0 0.25 SOR 25% 2 TOR 5[63.5] 1 [64.8] 5 [58.6] 0/ 551.0 // 125.1] // 66.2 // 197.9] SER .3[16.5] 4800 11066] 8 40 (8) 0 (8) AL 2[4880] [2[260] /2[2380] 2[3067] 6[3101] // 197.9]	135 131.1 [461.1] 151.2 10.41 3500 16.7% 2 4.0[101.6] 314.6 [71.5] 12.7 [38.0] 210.0 520.0 [47.7/ 118.1] 6.0/ 32.1 [17.9/ 95.9] 235.6[21.9] 120500 [204730] 10 2.40 (10) 4.0 (10) 2.28 1/2[5800] 89[2260] 98[2490] 7776[3527] 7894[3581]	14 14 34 1 212 1 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150 5.5 [511.7] 167.0 10.45 10.45 16.7% 2 .0[101.6] 49.2 [79.3] 5.3 [45.7] 0.0.7 520.0 7.7/ 118.1] 6.0/ 32.1 7.9/ 95.9] 120500 1204730] 10 2.40 (10) 4.0 (10) 81/2[5800] 881[2260] 98[2490] 880[3575] 998[3628]	165 162.1 [570.1] 188.2 10.34 16.7% 2 4.0[101.6] 389.0 [88.4] 16.7 [49.9] 250.0/ 550.0 [56.8/ 124.9] 7.3/ 31.6 [21.8/ 94.5] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 270 1/2[6870] 89[2260] 98[2490] 9059[4109] 9190[4169] 9190[4169]	180 179.2 [630.2] 206.0 10.44 16.7% 2 4.0[101.6] 430.1 [97.7] 16.3 [48.7] 270.0/ 621.0 [6.9/ 32.1 [206/ 95.9] 282.6[26.3] 144600 [245677] 12 2.40 (12) 4.0 (12) 98[240] 9589[4350] 9752[4423]			

Notes: 1. The above data are rated in accordance with AHRI Standard 550/590 with following conditions: Evaporator leaving fluid temperature 44°F with fluid flow rate 2.4 USgpm/ton; ambient temperature at 95°F; evaporator fouling factor 0.0001hr.ft².°F/Btu 2. To consult nearest Dunham-Bush sales office for computer selections other than above operating conditions

50 Hz

		AMBIENT TEMPERATURE, °F											
L₩T	MODEL		85			95			105			115	
•	ACDS	TR	kW ⁱ	EER	TR	kW ⁱ	EER	TR	kW ⁱ	EER	TR	kW ⁱ	EER
	010	10.6	11.2	11.37	9.9	12.3	9.60	9.1	13.7	7.98	8.2	15.3	6.45
	020	19.8	17.6	11.51	18.6	19.6	9.81	17.1	21.9	8.21	15.6	24.6	6.77
	030	27.2	25.5	11.40	25.4	28.5	9.63	23.4	32.1	7.98	21.3	36.0	6.55
	040	41.4	37.1	11.45	38.6	41.5	9.70	35.6	46.6	8.09	32.4	52.6	6.61
	050	54.4	51.0	11.40	50.8	57.1	9.63	46.8	64.2	7.98	42.7	72.0	6.55
	060	63.4	60.4	11.41	59.0	67.6	9.59	54.2	75.8	7.93	49.3	85.1	6.48
	065	66.7	54.7	12.50	62.4	61.2	10.62	57.8	68.7	8.88	53.0	77.1	7.36
40	070	71.1	63.4	11.73	66.4	70.8	9.94	61.4	79.3	8.31	56.2	88.9	6.87
	080	79.9	71.3	11.88	74.5	79.5	10.06	68.8	88.9	8.40	62.8	99.5	6.92
	095	95.3	88.1	11.36	89.0	98.0	9.67	82.3	109.2	8.12	75.3	121.9	6.73
	105	104.9	96.1	11.59	98.0	107.4	9.81	90.5	120.2	8.18	82.8	134.8	6.74
	115	115.2	107.9	11.48	107.3	120.4	9.69	99.1	134.5	8.09	90.5	150.6	6.66
	125	130.4	119.1	11.61	121.8	132.6	9.86	112.6	148.0	8.26	103.0	165.4	6.83
	135	143.5	135.6	11.39	133.8	150.8	9.65	123.5	168.0	8.07	112.7	187.5	6.66
	175	183.0	175.6	11.30	170.7	194.6	9.61	157.7	216.1	8.06	144.4	240.1	6.69
	010	11.0	11.3	11.72	10.2	12.4	9.89	9.4	13.8	8.22	8.5	15.4	6.64
	020	20.6	17.7	11.85	19.2	19.7	10.10	17.8	22.1	8.45	16.2	24.8	6.97
	030	28.2	25.7	11.72	26.3	28.8	9.90	24.2	32.4	8.20	22.1	36.3	6.73
	040	42.9	37.4	11.79	40.0	41.8	9.99	37.0	47.0	8.33	33.6	53.0	6.80
	050	56.4	51.5	11.72	52.6	57.6	9.90	48.5	64.7	8.20	44.2	72.6	6.73
	060	65.6	61.0	11.72	61.1	68.2	9.84	56.1	76.5	8.14	51.1	85.8	6.66
	065	69.1	55.1	12.85	64.6	61.7	10.92	59.8	69.3	9.13	54.9	77.7	7.56
42	070	73.7	63.9	12.07	68.8	71.4	10.22	63.6	80.0	8.54	58.2	89.6	7.06
	080	82.7	72.0	12.20	77.1	80.2	10.33	71.2	89.7	8.62	65.1	100.5	7.11
	095	98.7	88.8	11.69	92.3	98.8	9.95	85.3	110.1	8.36	78.1	122.9	6.92
	105	108.7	97.0	11.92	101.5	108.3	10.08	93.7	121.3	8.41	85.7	135.9	6.93
	115	119.3	108.9	11.79	111.1	121.5	9.95	102.6	135.7	8.31	93.7	152.0	6.83
	125	135.1	120.2	11.94	126.2	133.7	10.14	116.7	149.2	8.50	106.8	166.8	7.02
	135	148.7	136.9	11.70	138.6	152.2	9.91	127.9	169.5	8.29	116.8	189.2	6.84
	175	189.3	177.2	11.60	176.7	196.3	9.86	163.2	218.0	8.27	149.4	242.2	6.87
	010	11.4	11.3	12.10	10.6	12.5	10.21	9.8	13.8	8.48	8.8	15.5	6.86
	020	21.3	17.8	12.22	19.9	19.9	10.41	18.4	22.3	8.71	16.8	25.0	7.18
	030	29.2	25.9	12.09	27.3	29.0	10.21	25.1	32.6	8.46	22.9	36.5	6.94
	040	44.5	37.7	12.16	41.5	42.1	10.30	38.3	47.3	8.59	34.9	53.4	7.01
	050	58.5	51.8	12.09	54.6	57.9	10.21	50.3	65.1	8.46	45.9	73.1	6.94
	060	68.0	61.4	12.05	63.3	68.7	10.13	58.2	77.1	8.38	52.9	86.5	6.85
	065	71.6	55.4	13.27	67.1	62.0	11.27	62.1	69.7	9.43	56.9	78.1	7.81
44	0/0	76.3	64.4 70.5	12.42	/1.3	/1.9	10.52	65.9 70.0	80.6	8.79	60.3	90.3	7.27
	080	00.7	12.5	12.57	80.0	80.8	10.64	13.8	90.4	8.88	01.5	101.2	7.32
	105	102.4	89.4	12.06	95.7	99.4	10.26	88.5	10.8	0.01	00.0	123.7	7.14
	105	112.0	97.7 100.9	12.20	100.1	109.1	10.37	97.1 106.2	122.1	0.00	00.0 07.0	152.9	7.13
	125	123.3	109.0	12.12	130.7	122.0	10.23	120.2	150.0	0.04	37.0	169.0	7.03
	125	15/ 0	137.0	12.23	143.6	153 /	10.44	132.8	170.0	8.53	121.0	100.0	7.04
	175	196.0	178.6	11 92	182.9	197.9	10.20	169.0	219.7	8.50	154.7	244.1	7.04
	115	100.0	110.0	11.32	102.3	101.0	10.15	103.0	213.1	0.00	104.1	2-7- 4 . I	1.00

LEGEND

 LWT : Leaving Chilled Water Temperature
 kWⁱ : Compressor Power Input

 EER : Unit Energy Efficiency Ratio (Includes power input for compressors and fan motors.)
 kWⁱ : Compressor Power Input In kW

NOTES: 1. Rating is based on 10°F temperature different at evaporator inlet/outlet fluid temperature, and evaporator fouling factor 0.0001hr.ft².°F/Btu 2. Interpolation between ratings is permissible but extrapolation is NOT.

50 Hz

						AM	BIENT TEM	PERATURE	E, °F				
LWT °F	MODEL		85			95			105			115	
F ACDS		TR	kW ⁱ	EER	TR	kW ⁱ	EER	TR	kW ⁱ	EER	TR	kW ⁱ	EER
	010	11.8	11.4	12.43	11.0	12.6	10.49	10.1	13.9	8.71	9.1	15.6	7.05
	020	22.1	18.0	12.55	20.6	20.0	10.69	19.1	22.5	8.94	17.4	25.2	7.37
	030	30.2	26.2	12.40	28.2	29.2	10.47	26.0	32.9	8.67	23.7	36.9	7.11
	040	46.1	37.9	12.51	43.0	42.4	10.60	39.7	47.7	8.83	36.1	53.8	7.22
	050	60.5	52.3	12.40	56.5	58.5	10.47	52.0	65.8	8.67	47.4	73.8	7.11
	060	70.2	62.0	12.34	65.4	69.4	10.37	60.1	77.8	8.58	54.7	87.3	7.01
	065	74.1	56.0	13.62	69.4	62.6	11.57	64.2	70.3	9.67	58.9	78.9	8.01
46	070	78.9	65.0	12.74	73.7	72.6	10.79	68.2	81.4	9.01	62.4	91.1	7.45
	080	88.6	73.2	12.87	82.6	81.6	10.90	76.3	91.3	9.09	69.7	102.3	7.50
	095	106.0	90.2	12.38	99.1	100.3	10.54	91.6	111.8	8.85	83.8	124.8	7.33
	105	116.4	98.6	12.57	108.7	110.2	10.63	100.4	123.3	8.87	91.8	138.3	7.31
	115	127.7	110.9	12.41	119.0	123.7	10.48	109.8	138.2	8.74	100.3	154.8	7.19
	125	144.8	122.2	12.61	135.3	136.0	10.71	125.1	151.8	8.97	114.4	169.6	7.41
	135	159.3	139.3	12.34	148.5	155.0	10.45	137.1	172.6	8.74	125.1	192.7	7.21
	175	202.6	180.3	12.21	189.0	199.9	10.38	174.6	221.9	8.71	159.8	246.6	7.23
	010	12.2	11.5	12.79	11.4	12.7	10.79	10.5	14.0	8.96	9.5	15.7	7.25
	020	22.9	18.1	12.91	21.4	20.2	10.99	19.7	22.6	9.20	18.0	25.4	7.58
	030	31.3	26.4	12.72	29.2	29.5	10.74	26.9	33.2	8.90	24.5	37.2	7.30
	040	47.7	38.3	12.87	44.6	42.8	10.90	41.1	48.1	9.08	37.4	54.3	7.42
	050	62.6	52.8	12.72	58.4	59.0	10.74	53.8	66.3	8.90	49.1	74.4	7.30
	060	72.6	62.7	12.63	67.5	70.1	10.61	62.1	78.7	8.78	56.5	88.2	7.17
	065	76.7	56.4	13.99	71.8	63.1	11.89	66.4	70.8	9.94	60.9	79.5	8.23
48	070	81.6	65.6	13.07	76.2	73.3	11.07	70.5	82.1	9.25	64.5	92.0	7.64
	080	91.6	73.9	13.21	85.5	82.4	11.18	78.9	92.1	9.33	72.1	103.2	7.69
	095	109.7	91.1	12.71	102.5	101.2	10.82	94.8	112.8	9.08	86.8	126.0	7.52
	105	120.4	99.5	12.90	112.4	111.2	10.91	103.8	124.4	9.10	95.0	139.5	7.50
	115	132.0	112.0	12.73	123.0	124.9	10.74	113.6	139.5	8.96	103.7	156.3	7.37
	125	149.9	123.3	12.95	140.0	137.2	10.99	129.5	153.1	9.21	118.4	171.1	7.61
	135	164.8	140.6	12.66	153.7	156.4	10.72	141.8	174.2	8.97	129.4	194.4	7.40
	175	209.3	182.1	12.51	195.4	201.8	10.63	180.4	224.1	8.92	165.2	249.0	7.40
	010	12.7	11.6	13.12	11.8	12.8	11.07	10.8	14.1	9.20	9.8	15.8	7.43
	020	23.6	18.3	13.24	22.1	20.4	11.28	20.4	22.8	9.44	18.6	25.6	7.78
	030	32.4	26.6	13.05	30.2	29.8	11.02	27.8	33.5	9.13	25.4	37.6	7.49
	040	49.4	38.6	13.21	46.1	43.2	11.19	42.5	48.5	9.33	38.7	54.7	7.62
	050	64.7	53.2	13.05	60.4	59.5	11.02	55.6	66.9	9.13	50.7	75.1	7.49
	060	74.9	63.3	12.92	69.7	70.8	10.85	64.1	79.5	8.98	58.3	89.1	7.34
	065	79.3	56.8	14.38	74.3	63.6	12.22	68.7	71.4	10.21	63.0	80.1	8.45
50	070	84.4	66.2	13.42	78.9	73.9	11.37	72.9	82.8	9.49	66.7	92.7	7.85
	080	94.7	/4.6	13.54	88.4	83.2	11.46	81.6	93.0	9.56	/4.6	104.2	7.88
	095	113.4	91.9	13.04	106.0	102.2	11.10	98.1	113.9	9.31	89.7	127.1	7.71
	105	124.5	100.4	13.24	116.2	112.1	11.19	107.4	125.5	9.34	98.2	140.7	7.69
	115	136.5	113.0	13.05	127.2	126.1	11.02	117.4	140.8	9.19	107.2	15/./	7.56
	125	155.1	124.3	13.30	144.8	138.4	11.29	134.0	154.4	9.46	122.5	1/2.6	7.81
	135	170.5	141.9	12.99	159.0	157.8	11.00	146.7	175.8	9.20	133.9	196.2	7.59
	1/5	216.4	183.7	12.83	201.9	203.6	10.90	186.5	226.0	9.14	170.7	251.2	7.59

LEGEND

 LWT : Leaving Chilled Water Temperature
 kWⁱ : Compressor Power Input

 EER : Unit Energy Efficiency Ratio (Includes power input for compressors and fan motors.)
 kWⁱ : Compressor Power Input In kW

NOTES: 1. Rating is based on 10°F temperature different at evaporator inlet/outlet fluid temperature, and evaporator fouling factor 0.0001hr.ft².°F/Btu 2. Interpolation between ratings is permissible but extrapolation is NOT.

60 Hz

						AME		PERATURE	, °F				
LWT °F	MODEL ACDS		85			95			105			115	
		TR	kW	EER	TR	kW ⁱ	EER	TR	kW	EER	TR	kW	EER
	010	10.0	10.5	11.37	9.3	11.5	9.76	8.6	12.5	8.24	7.9	13.8	6.81
	020	23.1	19.8	11.29	21.6	21.8	9.74	19.9	24.1	8.28	18.2	26.8	6.90
	030	29.0	25.4	11.50	27.0	28.4	9.74	24.8	31.8	8.13	22.5	35.7	6.65
	040	46.4	39.2	11.42	43.3	43.2	9.84	40.0	47.8	8.37	36.5	53.1	6.98
	050	57.5	50.4	11.50	53.4	56.3	9.73	49.0	63.0	8.10	44.3	70.9	6.61
	060	67.6	60.9	11.49	62.7	68.0	9.70	57.6	75.9	8.08	52.1	85.1	6.60
	070	78.6	72.0	11.56	72.9	80.3	9.73	66.9	89.5	8.11	60.5	99.8	6.63
40	080	87.6	77.8	11.41	81.5	86.5	9.69	75.1	96.2	8.15	68.3	107.1	6.75
	090	97.3	88.1	11.39	90.4	97.7	9.68	83.2	108.4	8.13	75.6	120.5	6.72
	100	108.8	95.5	11.38	101.4	105.5	9.76	93.6	117.0	8.25	85.4	129.8	6.88
	120	118.8	106.6	11.33	110.6	117.6	9.70	102.1	130.1	8.21	92.9	144.4	6.81
	135	130.9	112.6	11.50	122.2	125.0	9.84	113.0	139.2	8.31	103.4	155.1	6.93
	150	145.5	126.8	11.58	135.7	140.5	9.89	125.3	156.1	8.35	114.4	173.4	6.95
	165	161.7	141.8	11.37	151.0	156.6	9.78	139.6	173.6	8.28	127.6	192.7	6.92
	180	179.0	157.8	11.51	167.0	173.9	9.89	154.1	192.4	8.36	140.6	213.4	6.97
	010	10.3	10.6	11.70	9.7	11.6	10.04	8.9	12.6	8.48	8.1	14.0	7.00
	020	23.9	19.9	11.62	22.3	22.0	10.02	20.6	24.3	8.51	18.8	27.0	7.10
	030	30.1	25.6	11.85	28.0	28.6	10.04	25.7	32.0	8.38	23.3	36.0	6.86
	040	48.0	39.6	11.72	44.8	43.6	10.11	41.4	48.2	8.59	37.8	53.6	7.17
	050	59.6	50.8	11.84	55.3	56.7	10.01	50.8	63.5	8.34	45.9	71.4	6.80
	060	70.0	61.5	11.82	65.0	68.6	9.97	59.6	76.6	8.30	53.9	85.8	6.78
	070	81.3	72.8	11.84	75.4	81.1	9.97	69.2	90.4	8.31	62.5	100.9	6.79
42	080	90.7	78.5	11.71	84.3	87.3	9.95	77.7	97.1	8.36	70.7	108.1	6.92
	090	100.6	89.0	11.68	93.5	98.7	9.93	86.1	109.5	8.34	78.2	121.7	6.89
	100	112.6	96.4	11.69	105.0	106.6	10.02	96.9	118.1	8.47	88.4	131.1	7.06
	120	123.2	107.5	11.66	114.7	118.7	9.99	105.9	131.2	8.45	96.3	145.6	7.01
	135	135.5	113.5	11.83	126.6	126.1	10.12	117.0	140.4	8.54	107.0	156.4	7.12
	150	150.8	128.0	11.90	140.5	141.8	10.17	129.8	157.5	8.58	118.5	175.0	7.15
	165	167.5	143.2	11.69	156.4	158.1	10.04	144.6	175.2	8.50	132.2	194.5	7.10
	180	185.4	159.4	11.82	173.0	175.6	10.15	159.7	194.4	8.59	145.6	215.5	7.15
	010	10.7	10.7	12.01	10.0	11.7	10.30	9.3	12.8	8.70	8.4	14.1	7.18
	020	24.8	20.1	11.92	23.1	22.2	10.28	21.4	24.6	8.73	19.5	27.3	7.28
	030	31.2	25.8	12.21	29.0	28.9	10.33	26.7	32.3	8.62	24.2	36.3	7.06
	040	49.7	39.9	12.05	46.4	44.0	10.39	42.9	48.7	8.83	39.1	54.1	7.36
	050	61.8	51.2	12.20	57.4	57.2	10.32	52.7	64.0	8.59	47.6	72.0	7.01
	060	72.4	62.0	12.14	67.3	69.2	10.24	61.7	77.3	8.53	55.8	86.6	6.96
	070	84.0	73.5	12.13	77.9	82.0	10.21	/1.5	91.3	8.50	64.6	101.9	6.95
44	080	93.8	79.3	12.02	87.2	88.1	10.21	80.4	98.0	8.58	/3.1	109.2	7.10
	100	104.1	89.8 07.0	10.00	90.8	99.6	10.19	89.1	110.6	ö.56	80.9	122.9	7.07
	100	110.7	97.2	12.02	108.8	107.5	10.30	100.4	119.2	ö./1	91.0	132.2	7.26
	120	127.5	108.0	12.16	134.4	119.0	10.25	109.0	102.0	0.07	99.8 110.9	147.1	7.20
	133	140.4	120.4	12.10	145.5	1/2 0	10.41	121.2	141.0	0.10	122.6	176.5	7.32
	165	172.5	129.1	12.23	140.0	143.0	10.40	134.4	176.7	0.02 8 75	137.0	10.0	7 31
	180	192.1	160.7	12.00	179.2	177.2	10.04	165.4	196.0	8.83	150.0	217 4	7.35
	100	104.1	100.7	12.10	113.2		10.44	100.4	100.0	0.00	100.0	211.4	1.55

LEGEND

 LWT : Leaving Chilled Water Temperature
 kWⁱ : Compressor Power Input

 EER : Unit Energy Efficiency Ratio (Includes power input for compressors and fan motors.)
 kWⁱ : Compressor Power Input In kW

NOTES: 1. Rating is based on 10°F temperature different at evaporator inlet/outlet fluid temperature, and evaporator fouling factor 0.0001hr.ft².°F/Btu 2. Interpolation between ratings is permissible but extrapolation is NOT.

60 Hz

		AMBIENT TEMPERATURE, °F											
LWT	MODEL		85			95			105			115	
•	ACDS	TR	kW ⁱ	EER	TR	kW ⁱ	EER	TR	kW ⁱ	EER	TR	kW ⁱ	EER
	010	11.1	10.8	12.33	10.4	11.8	10.57	9.6	12.9	8.93	8.7	14.2	7.37
	020	25.6	20.4	12.23	23.9	22.4	10.54	22.1	24.8	8.96	20.2	27.6	7.47
	030	32.3	26.0	12.57	30.0	29.1	10.64	27.6	32.5	8.88	25.0	36.6	7.26
	040	51.5	40.4	12.36	48.0	44.5	10.66	44.4	49.2	9.05	40.5	54.7	7.55
	050	64.0	51.6	12.55	59.5	57.6	10.61	54.6	64.5	8.83	49.3	72.6	7.20
	060	74.9	62.7	12.44	69.5	69.9	10.50	63.8	78.1	8.74	57.7	87.5	7.13
	070	86.9	74.2	12.44	80.6	82.8	10.47	74.0	92.2	8.72	66.8	102.9	7.13
46	080	97.1	80.0	12.35	90.3	88.9	10.49	83.2	98.9	8.81	75.7	110.1	7.29
	090	107.7	90.7	12.29	100.1	100.6	10.44	92.1	111.7	8.77	83.6	124.1	7.25
	100	120.8	98.1	12.36	112.6	108.5	10.59	104.0	120.2	8.95	94.9	133.4	7.46
	120	132.0	109.6	12.30	123.0	121.0	10.53	113.5	133.8	8.90	103.3	148.5	7.39
	135	145.3	115.5	12.50	135.7	128.3	10.69	125.5	142.9	9.02	114.8	159.1	7.52
	150	161.4	130.4	12.54	150.5	144.5	10.72	139.0	160.5	9.04	126.9	178.3	7.52
	165	179.7	145.8	12.35	167.8	160.9	10.61	155.1	178.4	8.98	141.8	198.0	7.50
	180	198.9	162.3	12.49	185.5	178.9	10.72	171.3	198.0	9.06	156.2	219.5	7.55
	010	11.5	10.9	12.65	10.7	11.9	10.85	9.9	13.0	9.16	9.0	14.3	7.56
	020	26.5	20.6	12.54	24.7	22.7	10.81	22.8	25.1	9.18	20.8	27.9	7.65
	030	33.4	26.3	12.92	31.1	29.3	10.93	28.6	32.8	9.12	25.9	36.9	7.46
	040	53.2	40.8	12.67	49.7	45.0	10.92	45.9	49.7	9.28	41.8	55.3	7.74
	050	66.3	52.1	12.90	61.6	58.1	10.91	56.5	65.1	9.08	51.1	73.2	7.40
	060	77.5	63.2	12.77	72.0	70.5	10.78	66.1	78.8	8.97	59.7	88.3	7.32
	070	89.7	75.0	12.73	83.2	83.6	10.71	76.4	93.2	8.92	69.0	104.0	7.29
48	080	100.4	80.7	12.66	93.3	89.8	10.75	86.0	99.9	9.03	78.2	111.2	7.48
	090	111.3	91.6	12.59	103.4	101.6	10.70	95.2	112.8	8.98	86.4	125.3	7.42
	100	125.0	99.1	12.67	116.5	109.6	10.86	107.6	121.4	9.18	98.1	134.8	7.65
	120	136.6	110.7	12.62	127.2	122.2	10.80	117.4	135.1	9.13	106.8	150.0	7.58
	135	150.3	116.5	12.84	140.4	129.4	10.98	129.8	144.1	9.26	118.7	160.5	7.72
	150	167.0	131.6	12.88	155.7	145.8	11.00	143.8	162.0	9.28	131.2	180.0	7.72
	165	186.0	147.1	12.69	173.7	162.4	10.90	160.6	180.0	9.23	146.8	199.8	7.71
	180	205.9	163.9	12.82	192.0	180.7	11.00	177.3	199.9	9.30	161.7	221.7	7.75
	010	11.9	11.0	12.96	11.1	12.0	11.12	10.3	13.1	9.38	9.4	14.5	7.75
	020	27.4	20.8	12.85	25.6	22.9	11.07	23.6	25.4	9.40	21.6	28.2	7.84
	030	34.6	26.5	13.28	32.2	29.6	11.24	29.6	33.1	9.38	26.8	37.2	7.67
	040	55.0	41.2	12.99	51.4	45.5	11.20	47.4	50.3	9.51	43.3	55.9	7.93
	050	68.6	52.6	13.24	63.7	58.7	11.19	58.4	65.7	9.31	52.8	73.9	7.60
	060	80.1	63.9	13.08	74.3	71.2	11.03	68.2	79.6	9.18	61.7	89.2	7.50
	070	92.7	75.8	13.02	85.9	84.5	10.95	78.9	94.2	9.12	71.3	105.1	7.45
50	080	103.7	81.5	12.97	96.4	90.7	11.02	88.9	100.8	9.25	80.8	112.3	7.66
	090	114.9	92.7	12.88	106.8	102.8	10.94	98.3	114.1	9.19	89.3	126.8	7.59
	100	129.2	100.1	13.00	120.5	110.7	11.13	111.2	122.7	9.41	101.5	136.1	7.84
	120	141.3	111.8	12.95	131.7	123.4	11.08	121.5	136.4	9.37	110.6	151.5	7.77
	135	155.4	117.6	13.17	145.1	130.7	11.26	134.2	145.5	9.50	122.7	162.0	7.92
	150	172.6	133.0	13.19	160.9	147.3	11.27	148.6	163.6	9.50	135.6	181.8	7.91
	165	192.4	148.5	13.02	179.7	164.0	11.19	166.1	181.8	9.47	151.9	201.8	7.90
	180	213.0	165.6	13.15	198.7	182.5	11.28	183.4	201.9	9.54	167.2	223.9	7.94

LEGEND

 LWT : Leaving Chilled Water Temperature
 kWⁱ : Compressor Power Input

 EER : Unit Energy Efficiency Ratio (Includes power input for compressors and fan motors.)
 kWⁱ : Compressor Power Input In kW

NOTES: 1. Rating is based on 10°F temperature different at evaporator inlet/outlet fluid temperature, and evaporator fouling factor 0.0001hr.ft².°F/Btu 2. Interpolation between ratings is permissible but extrapolation is NOT.

SOUND PRESSURE DATA

50 Hz

Madal				Banc	l (Hz)				τοται
woder	63	125	250	500	1K	2K	4K	8K	TOTAL
1. FOR STAND	ARD UNIT		1	1	I	1	I	I	L
ACDS 010	20	30	37	44	47	47	46	40	53
ACDS 020	23	33	40	47	50	49	49	43	55
ACDS 030	23	33	40	50	51	51	49	43	57
ACDS 040	26	36	43	50	53	52	52	46	58
ACDS 050	26	36	43	52	54	54	52	46	59
ACDS 065	20	37	43	53	56	55	54	40	61
ACDS 070	27	37	44	53	56	56	54	47	61
ACDS 080	27	37	44	53	56	56	54	47	61
ACDS 095	28	38	45	55	57	56	55	49	62
ACDS 105	28	38	45	55	57	57	55	49	62
ACDS 115	28	38	45	55	57	57	55	49	62
ACDS 125	29	39	46	56	58	57	56	49	63
ACDS 135	29	39	40	50	58	57	57	50	66
					00	00	51	50	00
2. FOR LOW N	UISE FAN		IH LNF U	PTION)	12	44	12	25	40
ACDS 020	15	25	33	40	43	44	43	36	53
ACDS 040	18	28	35	43	46	47	45	38	52
ACDS 050	18	28	36	50	51	51	47	39	56
ACDS 060	18	28	36	50	51	52	48	39	57
ACDS 065	19	29	37	50	52	52	48	41	57
ACDS 070	19	29	37	50	52	53	48	41	57
ACDS 080	19	29	37	50	52	54	48	41	58
ACDS 095	21	31	38	52	53	54	49	42	59
ACDS 105	21	31	38	52	53	55	50	42	59
ACDS 125	21	31	39	53	55	55	50	43	60
ACDS 135	21	31	39	54	56	55	50	43	60
ACDS 175	23	32	42	58	62	59	53	45	65
3. FOR COMPR	RESSOR J	ACKET O	NLY (WITH	LN2 OPT	ION)				
ACDS 010	20	30	37	44	47	46	46	40	53
ACDS 020	23	33	40	47	50	49	49	43	55
ACDS 030	23	33	40	48	50	49	49	43	55
ACDS 040	26	36	43	50	53	52	52	46	58
ACDS 050	26	36	43	50	53	52	52	46	58
ACDS 060	20	37	43	52	55	54	53	40	60
ACDS 070	27	37	44	52	55	54	53	47	60
ACDS 080	27	37	44	52	55	54	53	47	60
ACDS 095	28	38	45	53	56	55	54	48	61
ACDS 105	28	38	45	53	56	55	54	48	61
ACDS 115	28	38	45	53	56	55	54	48	61
ACDS 125	29	39	46	54	57	56	55	49	62
ACDS 135	29	39	46	54	57	56	55	49	62
4. FOR LOW N		+ COMPR		ACKET (W	ITH LNF +		ONS)	50	04
ACDS 020	15	25	32	39	42	42	42	35	48
ACDS 030	15	25	32	43	44	44	42	35	50
ACDS 040	18	28	35	42	45	45	44	38	51
ACDS 050	18	28	35	46	47	47	45	38	53
ACDS 060	18	28	35	46	48	48	45	38	53
ACDS 065	19	29	37	46	48	48	46	40	53
ACDS 0/0	19	29	31	40	48 19	49	40	40	54
ACDS 095	21	31	38	48	50	49	47	41	55
ACDS 105	21	31	38	48	50	50	48	41	55
ACDS 115	21	31	38	48	50	51	48	41	56
ACDS 125	21	31	39	49	51	51	48	42	56
ACDS 135	21	31	39	49	52	51	48	42	57
ACDS 175	22	32	41	54	58	55	50	43	61

Note: Unit Sound Pressure Level (Lp] @ 30 FT [10m] (free field], ± 2 dB tolerance.

SOUND PRESSURE DATA

60 Hz

Madal				Band	(Hz)				TOTAL
wodei	63	125	250	500	1K	2K	4K	8K	TOTAL
1. FOR STAND	ARD UNIT		1	1	I	1	1	1	1
ACDS 010	20	30	37	44	47	47	46	40	53
ACDS 020	29	39	46	53	56	55	55	49	61
ACDS 030	29	39	46	55	57	56	55	49	62
ACDS 040	32	42	49	56	59	58	58	52	64
ACDS 050	32	42	49	57	60	59	58	52	65
ACDS 060	32	42	49	57	60	59 60	58	52	65
ACDS 080	33	43	50	59	62	61	60	54	67
ACDS 090	33	43	50	59	62	61	60	54	67
ACDS 100	35	45	52	60	63	61	61	55	68
ACDS 120	35	45	52	60	63	61	61	55	68
ACDS 135	35	45	52	60	64	63	62	56	69
ACDS 150	35	45	52	61	64	63	62	56	69
ACDS 165	36	46	53	61	64	63	62	56	69
ACDS 180	36	46	53	62	65	63	62	56	70
2. FOR LOW N	OISE FAN	ONLY (WI	TH LNF O	PTION)		1		1	
ACDS 020	22	32	39	47	50	50	49	42	56
ACDS 030	22	32	39	51	54	53	49	43	58
ACDS 040	25	35	42	49 54	56	55	52	45	50
ACDS 060	25	35	42	54	57	56	52	40	61
ACDS 070	25	35	42	54	57	57	52	46	62
ACDS 080	27	37	44	55	58	57	54	47	63
ACDS 090	27	37	44	55	58	57	54	47	63
ACDS 100	28	38	45	56	59	57	55	48	63
ACDS 120	28	38	45	57	60	57	55	48	64
ACDS 135	29	39	46	57	59	59	55	49	64
ACDS 150	29	39	46	5/	60	59	55	49	64
ACDS 105	29	39	47	59	61	59	56	50	65
3. FOR COMPR					ON)	00		00	
ACDS 010	20	30	37	44	47	46	46	40	52
ACDS 020	29	39	46	53	56	55	55	49	61
ACDS 030	29	39	46	54	57	56	55	49	62
ACDS 040	32	42	49	56	59	58	58	52	64
ACDS 050	32	42	49	57	59	58	58	52	64
ACDS 060	32	42	49	57	59	59	58	52	65
ACDS 070	32	42	49	57	60	59	58	52	65
ACDS 080	33	43	50	58	61	60	60	54	66
ACDS 030	35	45	52	59	62	61	61	55	67
ACDS 120	35	45	52	59	62	61	61	55	67
ACDS 135	35	45	52	60	63	62	61	55	68
ACDS 150	35	45	52	60	63	62	61	55	68
ACDS 165	36	46	53	61	64	62	62	56	69
ACDS 180		46	53		64		62	56	69
4. FOR LOW N			ESSOR J/				JNS)	40	
ACDS 020	22	32	39	46	49	49	48	42	55
ACDS 030	22	32	39 42	49 49	52	52	49 51	42	58 58
ACDS 050	25	35	42	52	54	53	51	45	59
ACDS 060	25	35	42	52	55	54	51	45	60
ACDS 070	25	35	42	52	55	54	51	45	60
ACDS 080	27	37	44	53	56	55	53	47	61
ACDS 090	27	37	44	53	56	55	53	47	61
ACDS 100	28	38	45	54	57	55	54	48	62
ACDS 120	28	38	45	55	57	55	54	48	62
ACDS 135	29	39	46	55	58	57	55	49	63
ACDS 150	29	30	40	56	50	57	56	49	63
ACDS 180	29	39	46	56	59	57	56	50	64

Note: Unit Sound Pressure Level (Lp) @ 30 FT [10m] (free field), ± 2 dB tolerance.

ELECTRICAL DATA

Madal	ι	Jnit Electrical Da	ata (Standard Un	it)	Compressor Data			Condenser Fan Motor Data		
wodei	RLA	MCA	MFS	Max. Inrush	Qty	RLA	LRA	Qty	ĸw	FLA/Mtr
			F	ower Supply : 4	00V-3Ph-5	0Hz		1		
ACDS 010	23	22	45	162	1	19	158	1	1.56	4
ACDS 020	45	50	70	184	1 1	18 19	147 158	2	1.56	4
ACDS 030	59	66	90	245	1 1	22 29	170 215	2	1.56	4
ACDS 040	92	97	110	231	4	19	158	4	1.56	4
ACDS 050	118	125	150	304	2 2	22 29	170 215	4	1.56	4
ACDS 060	136	144	175	321	4	30	215	4	1.56	4
ACDS 065	144	152	175	329	4	30	215	6	1.56	4
ACDS 070	150	159	175	375	2 2	28 35	215 260	6	1.56	4
ACDS 080	168	177	200	392	4	36	260	6	1.56	4
ACDS 095	208	219	250	484	4	44	320	8	1.56	4
ACDS 105	224	233	250	448	3 3	28 36	215 260	8	1.56	4
ACDS 115	248	257	300	472	6	36	260	8	1.56	4
ACDS 125	280	291	350	556	3 3	36 44	260 320	10	1.56	4
ACDS 135	310	322	350	585	6	45	320	10	1.56	4
ACDS 175	390	405	450	746	6	57	413	12	1.56	4
			Pov	wer Supply : 208	~230V-3Ph	n-60Hz				
ACDS 010	36	44	70	271	1	32	267	1	1.4	4.2
ACDS 020	87	96	125	355	2	36	304	2	2.2	7.5
ACDS 030	107	119	150	381	2	46	320	2	2.2	7.5
ACDS 040	170	179	200	439	4	35	304	4	2.2	7.5
ACDS 050	214	220	250	400	4	40	320	4	2.2	7.5
ACDS 060	266	284	350	680	2	71	485	4	2.2	7.5
ACDS 070	322	340	400	734	4	73	485	4	2.2	7.5
ACDS 080	337	356	400	822	2	71 75	485 560	6	2.2	7.5
ACDS 090	349	368	400	833	4	76	560	6	2.2	7.5
ACDS 100	402	426	500	920	2	97	615	8	2.2	7.5
ACDS 120	456	481	500	972	4	99	615	8	2.2	7.5
ACDS 135	501	519	600	989	3	70	485 560	10	2.2	7.5
ACDS 150	519	538	600	1005	6	74	560	10	2.2	7.5
ACDS 165	600	625	700	1117	3 3	72 98	560 615	12	2.2	7.5
ACDS 180	678	703	800	1195	6	98	615	12	2.2	7.5
			F	ower Supply : 3	80V-3Ph-6	0Hz				
ACDS 010	23	28	45	142	1	20	142	1	1.40	2.5
ACDS 020	52	58	70	177	2	22	147	2	2.25	4.1
ACDS 030	66	74	100	207	2	29	170	2	2.25	4.1
ACDS 040	105	110	125	229	4	22	147	4	2.25	4.1
ACDS 050	153	140	200	330	2	30	170	4	2.25	4.1
ACDS 070	177	187	225	352	2	38 40	215 215	4	2.25	4.1
ACDS 080	189	200	225	405	2	38	215	6	2.25	4.1
ACDS 090	205	216	250	420	4	44 45	260 260	6	2.25	4.1
ACDS 100	229	242	300	495	2	44 54	260 320	8	2.25	4.1
ACDS 120	253	267	300	518	4	55	320	8	2.25	4.1
ACDS 135	278	289	300	496	3 3	37 42	215 260	10	2.25	4.1
ACDS 150	305	316	350	521	6	44	260	10	2.25	4.1
ACDS 165	340	354	400	605	3 3	42 55	260 320	12	2.25	4.1
ACDS 180	379	393	450	644	6	55	320	12	2.25	4.1

Note: MCA - Minimum Circuit Amps FLA – Full Load Amps RLA - Running Load Amps

MFS - Maximum Fuse Size LRA - Locked Rotor Amps

ELECTRICAL DATA

Madal	l	Unit Electrical Da	ata (Standard Ur	nit)	Compressor Data			Condenser Fan Motor Data		
Model	RLA	MCA	MFS	Max. Inrush	Qty	RLA	LRA	Qty	ĸw	FLA/Mtr
		1	F	Power Supply : 4	60V-3Ph-6	0Hz		1	1	I
ACDS 010	18	22	35	144	1	16	142	1	1.4	2.2
ACDS 020	44	49	60	173	2	18	147	2	2.4	4
ACDS 030	50	55	70	209	2	21	180	2	2.4	4
ACDS 040	84	88	100	214	4	17	147	4	2.4	4
ACDS 050	100	105	125	259	4	21	180	4	2.4	4
ACDS 060	118	125	150	304	2 2	22 29	170 215	4	2.4	4
ACDS 070	136	144	175	321	4	30	215	4	2.4	4
ACDS 080	154	163	200	378	2 2	29 36	215 260	6	2.4	4
ACDS 090	172	181	200	395	4	37	260	6	2.4	4
ACDS 100	190	201	225	466	2 2	35 44	260 320	8	2.4	4
ACDS 120	212	223	250	487	4	45	320	8	2.4	4
ACDS 135	226	235	250	452	3 3	28 34	215 260	10	2.4	4
ACDS 150	250	259	300	475	6	35	260	10	2.4	4
ACDS 165	285	296	350	560	3 3	34 45	260 320	12	2.4	4
ACDS 180	318	329	350	593	6	45	320	12	2.4	4
			F	Power Supply : 5	75V-3Ph-6	0Hz				
ACDS 010	15	18	30	105	1	13	103	1	1.4	1.8
ACDS 020	37	41	50	144	2	15	122	2	2.4	3.2
ACDS 030	45	50	60	161	2	19	135	2	2.4	3.2
ACDS 040	73	77	90	180	4	15	122	4	2.4	3.2
ACDS 050	89	94	110	205	4	19	135	4	2.4	3.2
ACDS 060	101	107	125	251	2 2	19 25	135 175	4	2.4	3.2
ACDS 070	113	119	125	263	4	25	175	4	2.4	3.2
ACDS 080	126	133	150	306	2 2	24 29	175 210	6	2.4	3.2
ACDS 090	140	147	175	319	4	30	210	6	2.4	3.2
ACDS 100	154	163	175	354	2 2	29 35	210 235	8	2.4	3.2
ACDS 120	166	175	200	367	4	35	235	8	2.4	3.2
ACDS 135	188	195	225	370	3 3	24 28	175 210	10	2.4	3.2
ACDS 150	206	214	225	387	6	29	210	10	2.4	3.2
ACDS 165	228	237	250	428	3 3	28 35	210 235	12	2.4	3.2
ACDS 180	249	258	300	449	6	35	235	12	2.4	3.2

Note: MCA - Minimum Circuit Amps FLA – Full Load Amps MFS - Maximum Fuse Size LRA - Locked Rotor Amps

RLA - Running Load Amps

Note: All dimensions are in inches [mm].

b

84 7/8 [2155]

89 [2260] MAX.

4 NOS OF Ø3/4 [19.1]

MOUNTING

13 [331]-

112 1/8 [2848]

115 3/4 [2940]

--4 NOS OF Ø2 7/8 [73.0] LIFTING HOLES

-13 [331]

50 Hz

50 Hz

50 Hz

60 Hz

60 Hz

60 Hz

60 Hz

FLOOR LOADING DIAGRAM

50 Hz

POINT LOAD LOCATION

Model		Dimensions – inches [mm]								
ACDS	Α	В	С	D	E					
010	45 5/8 [1160]	10 1/2 [267]	31 1/2 [800]	-	-					
020	45 5/8 [1160]	21 [533]	58 [1473]	-	-					
030	49 1/2 [1256]	21 [533]	58 [1473]	-	-					
040	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-					
050	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-					
060	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-					
065	84 7/8 [2155]	13 3/8 [340]	64 3/8 [1635]	57 3/4 [1467]	-					
070	84 7/8 [2155]	13 3/8 [340]	64 3/8 [1635]	57 3/4 [1467]	-					
080	84 7/8 [2155]	13 3/8 [340]	64 3/8 [1635]	57 3/4 [1467]	-					
095	84 7/8 [2155]	22 [559]	82 1/8 [2087]	72 7/8[1850]	-					
105	83 [2108]	30 [762]	71 [1802]	52 1/2 [1334]	-					
115	83 [2108]	30 [762]	71 [1802]	52 1/2 [1334]	-					
125	83 [2108]	30 [762]	88 3/4 [2255]	76 3/4 [1949]	-					
135	83 [2108]	30 [762]	88 3/4 [2255]	76 3/4 [1949]	-					
175	83 [2108]	30 [762]	69 1/8 [1757]	69 1/8 [1757]	69 1/8 [1757]					

POINT LOAD DATA

Model		Loads - Ibs [kg]								
ACDS	P1	P2	P3	P4	P5	P6	P7	P8	Weight Ibs [kg]	
010	217 (98)	272 (123)	254 (115)	278 (126)	-	-	-	-	1020 [463]	
020	333 (151)	412 (187)	323 (146)	398 (180)	-	-	-	-	1465 [665]	
030	436 (198)	537 (244)	424 (192)	461 (209)	-	-	-	-	1858 [843]	
040	720 (327)	759 (344)	854 (388)	887 (402)	-	-	-	-	3221 [1461]	
050	949 [431]	1045 [474]	902 [409]	985 [447]	-	-	-	-	3881 [1760]	
060	963 [437]	1034 [469]	930 [422]	984 [446]	-	-	-	-	3911 [1774]	
065	748 [339]	748 [339]	1149 [521]	1149 [521]	642 [291]	642 [291]	-	-	5076 [2303]	
070	751 [341]	751 [341]	1156 [525]	1156 [525]	643 [292]	643 [292]	-	-	5101 [2314]	
080	832 [377]	832 [377]	1189 [539]	1189 [539]	654 [297]	654 [297]	-	-	5350 [2427]	
095	1050 [476]	1050 [476]	1512 [686]	1512 [686]	814 [369]	813 [369]	-	-	6750 [3062]	
105	1079 [490]	963 [437]	1185 [538]	1152 [523]	1232 [559]	1211 [549]	-	-	6822 [3094]	
115	1082 [491]	966 [438]	1193 [541]	1165 [528]	1235 [560]	1222 [554]	-	-	6863 [3113]	
125	1298 [589]	1138 [516]	1830 [830]	1673 [759]	1203 [546]	1142 [518]	-	-	8283 [3757]	
135	1307 [593]	1169 [530]	1884 [854]	1854 [841]	1219 [553]	1204 [546]	-	-	8638 [3918]	
175	1229 [558]	1087 [493]	1746 [792]	1710 [775]	1126 [511]	1110 [504]	971 [440]	961 [436]	9940 [4509]	

FLOOR LOADING DIAGRAM

60 Hz

POINT LOAD LOCATION

Model		Dimensions – inches [mm]							
ACDS	Α	В	С	D	E				
010	45 5/8 [1160]	10 1/2 [267]	31 1/2 [800]	-	-				
020	45 5/8 [1160]	21 [533]	58 [1473]	-	-				
030	49 1/2 [1256]	21 [533]	58 [1473]	-	-				
040	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-				
050	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-				
060	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-				
070	84 7/8 [2155]	13 [331]	86 1/8 [2186]	-	-				
080	84 7/8 [2155]	13 3/8 [340]	64 3/8 [1635]	57 3/4 [1467]	-				
090	84 7/8 [2155]	13 3/8 [340]	64 3/8 [1635]	57 3/4 [1467]	-				
100	84 7/8 [2155]	22 [559]	82 1/8 [2087]	72 7/8 [1850]	-				
120	84 7/8 [2155]	22 [559]	82 1/8 [2087]	72 7/8 [1850]	-				
135	83 [2108]	30 [762]	88 3/4 [2255]	76 3/4 [1949]	-				
150	83 [2108]	30 [762]	88 3/4 [2255]	76 3/4 [1949]	-				
165	83 [2108]	30 [762]	69 1/8 [1757]	69 1/8 [1757]	69 1/8 [1757]				
180	83 [2108]	30 [762]	69 1/8 [1757]	69 1/8 [1757]	69 1/8 [1757]				

POINT LOAD DATA

Model				Loads -	lbs [kg]				Total Operating
ACDS	P1	P2	P3	P4	P5	P6	P7	P8	Weight Ibs [kg]
010	199 (90)	255 (116)	237 (108)	260 (118)	-	-	-	-	952 (432)
020	333 (151)	410 (186)	322 (146)	396 (180)	-	-	-	-	1461 (663)
030	436 (198)	537 (244)	424 (192)	461 (209)	-	-	-	-	1858 (843)
040	715 (324)	754 (342)	850 (386)	882 (400)	-	-	-	-	3203 (1453)
050	947 (430)	1037 (470)	900 (408)	979 (444)	-	-	-	-	3863 (1752)
060	963 (437)	1034 (469)	930 (422)	984 (446)	-	-	-	-	3911 (1774)
070	971 (441)	1040 (472)	936 (425)	989 (449)	-	-	-	-	3936 (1786)
080	752 (341)	752 (341)	1158 (525)	1157 (525)	644 (292)	644 (292)	-	-	5106 (2316)
090	832 (377)	832 (377)	1189 (539)	1189 (539)	654 (297)	654 (297)	-	-	5350 (2427)
100	1048 (475)	1048 (475)	1420 (644)	1420 (644)	787 (357)	787 (357)	-	-	6509 (2953)
120	1073 (487)	1073 (487)	1537 (697)	1537 (697)	808 (367)	808 (367)	-	-	6836 (3101)
135	1246 (565)	1115 (506)	1655 (751)	1620 (735)	1138 (516)	1121 (508)	-	-	7894 (3581)
150	1257 (570)	1126 (511)	1684 (764)	1657 (752)	1144 (519)	1130 (512)	-	-	7998 (3628)
165	1149 (521)	1008 (457)	1614 (732)	1474 (668)	1069 (485)	1011 (458)	947 (429)	920 (417)	9190 (4169)
180	1219 (553)	1076 (488)	1691 (767)	1655 (751)	1106 (502)	1090 (494)	963 (437)	952 (432)	9752 (4423)

EVAPORATOR WATER PRESSURE DROP

50 Hz

1a.) Imperial Units

1b.) SI Units

EVAPORATOR WATER PRESSURE DROP

60 Hz

1a.) Imperial Units

1b.) SI Units

FIELD POWER & CONTROL WIRING SCHEMATIC

TYPICAL FIELD WIRING DIAGRAM

APPLICATION DATA

UNIT DESIGNED OPERATING RANGE

Unit Operating Range – Ambient Temperature

The units are designed to operate at ambient temperature, 45~115°F [7~46°C]. If the unit requires to be operated at lower ambient temperature, the optional Low Ambient Operation (LA1) or Low Ambient Operation (LA2) or Extra Low Ambient Operation (LA3) shall be incorporated for stable operation.

Operating Ambient	SR, standard series					
Temperature	Minimum	Maximum				
Standard	45°F [7°C]	115°F [46°C]				
With LA 1	30°F [-1°C]	115°F [46°C]				
With LA 2	0°F [-18°C]	115°F [46°C]				
With LA 3	-20°F [-29°C]	115°F [46°C]				

If wind velocity in the area is over 5 mph [8 kmph], wind barrier is recommended.

Unit Operating Range – Evaporator Temperature

The unit is designed to deliver chilled fluid temperature within $40 \sim 60^{\circ}$ F [$4.5 \sim 15.6^{\circ}$ C]. The unit can start and pull down with up to 80° F [27° C] entering-fluid temperature. For sustained operation, it is recommended that the entering fluid temperature not exceed 70° F [21° C].

For unit installation with minimum ambient temperature at 32°F [0°C] or below, <u>Evaporator Heater (EVH)</u> option is recommended to prevent freezing of water in evaporator when the chiller is not in operation.

Operating Lim	its – Leaving	Fluid	Temperature
---------------	---------------	-------	-------------

Leaving Fluid Temperature	Minimum	Maximum		
Standard	40°F [4.5°C]	60°F [15.6°C]		
Dual Mode / Low Temp. Operation	20°F [-6.6°C]	60°F [15.6°C]		

EVAPORATOR FLUID CIRCUIT

Wide Range ΔT - Low Flow Applications

Multiple smaller chillers may be applied in series, each providing a portion of the design temperature range typical $10^{\circ}F$ [5.5°C] each.

Chilled fluid may be recirculated through the evaporator as shown below to allow the chiller to operate with acceptable flow rates and temperature ranges (Figure 1A).

Figure 1A

Narrow Range ΔT - High Flow Applications

For Narrow Range ΔT applications, a partial evaporator bypass piping and valve configuration can be used as shown below.

This permits a higher ΔT and lower ΔP (pressure drop) through the evaporator (Figure 1B).

Minimum Chilled Fluid Loop Volume

The evaporator fluid circuit requires a minimum system fluid volume of 3 US gallons per Ton [3.3 liters/ cooling kW] for stable operation. The minimum system fluid volume may increasing up to 10 US gallons per Ton [11 liters/ cooling kW] for process cooling, low load applications with small temperature range and/or vastly fluctuating load conditions.

Tanks for System Volume Enhancement

It may be necessary to install a tank in the system to provide sufficient system fluid volume, as shown below. The tank should be baffled and piped for proper fluid mixing to prevent stratification.

Figure 2B Single Loop System with Storage Tank to Increase Loop Volume

Figure 2C Primary and Secondary Loop Systems are normally used where the secondary system has variable flow and/or multiple loads. See example below.

Multiple Chillers In A Chilled Water System

Where the load is greater than available from one **ZEUS** ACDS, where standby capacity is required or the load profile dictates, multiple chillers may be piped in parallel. Units of equal size help to ensure fluid flow balance, but balancing valves ensure balanced flows even with dissimilar sized chillers.

Temperature controller sensors may or may not need to be moved to the common fluid piping depending on the specific application.

Parallel Chiller Applications – Both units operate simultaneously modulating with load variations. Each unit operates independently sensing its own leaving fluid temperature. The set point of each thermostat is set to maintain the desired loading scheme. (Figure 3A)

Figure 3A

Series Chiller Applications – Where a large temperature range is required (over 25 °F [13.9 °C]), the chiller may be piped in series. In this case the units are controlled independently. The load is progressive by temperature so the chiller selections are critical. (Figure 3B)

Figure 3B

Variable Evaporator Flow

Dunham-Bush chillers are capable for variable evaporator flow system. The chiller may operate to maintain constant leaving fluid temperature with evaporator flow rate changes, with below conditions fulfilled.

- Evaporator fluid flow rate is within minimum and maximum flow rate of the unit at all time during the operation
- Rate of flow changed shall not exceeded 10% per minute

Failure to comply with the above conditions will cause problem to the chiller operation and may cause the chiller to shutdown.

Water (Fluid) Strainers

It is recommended that 40-mesh strainers be installed in the fluid piping as close to unit evaporator as possible.

Oversizing Chillers

Oversizing of chillers more than 5-10% is not recommended. Oversizing causes energy inefficiency and shortened compressor life due to excessive compressor cycling. Future load requirements may result in temporary oversizing of equipment which will require careful unit selection. It may be better to properly size for the initial load and add another unit later for future increase. The use of multiple units is recommended where operation at minimum load for prolong period is expected and goal control required. Fully loaded equipment operates better and more efficiently than large equipment running at or near minimum capacity.

Hot gas bypass should not be a means to allow oversizing of chillers. Hot gas bypass should only be used where the equipment is sized properly for full load but the minimum load expected is lower than can be achieved by mechanical unloading is less than the minimum unloading step available.

Sound and Vibration

The compressors in ACDS units are resiliently, mounted to reduce the transmission of any noise and vibration to the frame.

The compressors are not mounted on springs because extra movement may cause line breakage and refrigerant leaks. Unit isolation helps prevent any remaining sound or vibration from entering the building structure, piping or electrical service.

Glycol Freeze Protection

If the chiller or fluid piping may be exposed to temperatures below freezing, glycol protection is recommended if the water is not drained. The recommended protection is 10°F [5.6°C] below the minimum ambient temperature in the equipment room and around piping. Use only glycol solutions approved for heat exchanger duty. DO NOT use automotive antifreezing.

If the equipment is being used to supply chilled fluid 38°F [3.3°C] or below, glycol should be used to prevent freeze damage. The freeze protection level should be 15°F [8.3°C] lower than the leaving brine temperature.

The use of glycol causes a performance derate as shown below which needs to be included in the unit selection procedure.

Table 1 : Ethylene Glycol

% E. G.	Freez	e Point	C1	K1	G1	P1	
By Weight	°F °C		Capacity Factor	kW Rate	Flow Factor	P.D. Factor	
10	26.2	-3.2	0.995	0.998	1.019	1.050	
15	22.4	-5.3	0.991	0.997	1.030	1.083	
20	17.8	-7.9	0.988	0.996	1.044	1.121	
25	12.6	-10.8	0.984	0.995	1.060	1.170	
30	6.7	-14.1	0.981	0.994	1.077	1.219	
35	0.0	-17.8	0.977	0.992	1.097	1.275	
40	-10.0	-23.3	0.973	0.991	1.116	1.331	
45	-17.5	-27.5	0.968	0.990	1.138	1.398	
50	-28.9	-33.8	0.964	0.989	1.161	1.466	

Table 2 : Propylene Glycol

% P. G.	Freeze	Point	C2	K2	G2	P2
By Weight	°F	°C	Factor	kW Rate	Flow	P.D. Factor
10	26.1	-3.3	0.988	0.994	1.005	1.019
15	22.8	-5.1	0.984	0.992	1.008	1.031
20	19.1	-7.2	0.978	0.990	1.010	1.051
25	14.5	-9.7	0.970	0.988	1.015	1.081
30	8.9	-12.8	0.962	0.986	1.021	1.120

Table 3 :	Correction	Factor -	Elevation
-----------	------------	----------	-----------

Elevation above Sea Level		Capacity	kW	
Feet [m]	Meters Factor	Factor	Factor	
0	0	1.00	1.00	
2000	600	0.99	1.01	
4000	1200	0.98	1.02	
6000	1800	0.97	1.03	

Table 4 : Correction Factor - FF

Fouling Factor		Capacity	kW Correction	
Hr.ft ² .°F/BTU	m².°C/kW	Factor	Factor	
0.0001	0.018	1.000	1.000	
0.00025	0.044	0.993	0.997	
0.00050	0.088	0.978	0.990	
0.00100	0.176	0.951	0.978	

Note: P.D. - Pressure drop across evaporator

Design Requirements

The following design requirements must be known in order to select a packaged chiller.

- *1) Required cooling capacity in TR [kW].
- 2) Evaporator outlet fluid temperature °F [°C].
- *3) USgpm of chilled fluid to be circulated.
- *4) Chilled fluid cooling range (fluid in °F[°C]- fluid outlet °F[°C])
- 5) Design ambient temperature °F[°C].
- 6) Electrical power characteristics.
- 7) Special codes (local, state or national codes) with which unit must comply

*Any 2 out of 3 must be known

EXAMPLE

Select an air cooled packaged chiller for the following conditions:

Cooling Capacity :	100 TR [351.7kW]			
Chilled Water In/Out Temperature :	54/44°F [12.2/6.7°C]			
Design ambient temperature :	95°F [35°C]			
Minimum operating ambient :	+20°F [-6.7°C].			
Altitude :	2000 feet [609.6m]			
Evaporator fouling factor :	0.0005 Hr.ft ² .°F/Btu			
Electrical characteristics :	460V/3/60Hz with single power connection.			

Step 1- Unit Selection

For 2000 feet [609.6m] elevation divide the specified tonnage by the capacity correction factor from Table 3.

 $\frac{100 \text{ TR}}{0.99} = 101 \text{ TR}$

For 0.0005 Hr.ft².°F/Btu fouling factor divide the required tonnage at 2000 feet [609.6m] by the fouling correction factor from Table 4.

<u>101 TR</u> = 103.3 TR 0.978

Entering the capacity data and we see that an **ZEUS** ACDS 100 unit for water at sea level has a capacity of 108.8 TR, drawing 107.5 compressor kW. The kW correction factors from Table 3 and 4 will be applied to the compressor kW below. For the conditions specified, the unit will do:

Capacity = 108.8 x 0.99 x 0.978 = 105.3 TR Compressor kW = 107.5 x 1.01 x 0.99 = 107.49 kW

Step 2- Evaporator USgpm and Pressure Drop

USgpm = Specified TR x 24 = 100 x 24Cooling Range 10 = 240 USgpm [54.50m³/hr]

Step 3- Chilled Fluid Pump Selection

To the pressure drop calculated in Step 2, add the pressure drop through the chilled fluid loop piping, valves and equipment. This will be the foundation of your pump selection criteria.

ICE THERMAL STORAGE SYSTEM (*ITES*)

The globe is progressively marching towards a serious electric energy crisis. The HVAC/R industry is shifting to operate with more efficient machines, as well as alternate system designs and solutions. Dunham-Bush, as a leader of HVAC/R solutions provider, we provide packaged solution for <u>ITES</u>, which include, equipments selections, chillers, Ice Cels and <u>CPM</u> for <u>ITES</u> system controls.

Dunham-Bush Chillers, with positive displacement rotary scroll compressor can easily cool low temperature glycol down to 20° F [-6.7 $^{\circ}$ C] to charge the ice storage tanks. The same chiller can also produce warmer supply fluid temperature, 40 to 45 $^{\circ}$ F [4.4 to 7.2 $^{\circ}$ C], for those building systems designed for only peak shaving.

Dunham-Bush is the only HVAC/R manufacturer who can provide complete <u>ITES</u> packaged solution, with own products for chillers, ice storage tanks and plant room control system, with following benefits.

Demand Charge: <u>ITES</u> allows some of the peak demand to be shifted to low-demand nighttime periods, thus reducing demand charges for the entire year.

Energy Cost: <u>ITES</u>, by operating chillers at night, will fully utilize incentive on electricity night tariff, which is much lower compare to day tariff

Rebates: <u>ITES</u> usually qualifies for rebates offered by electric utilities or governments for equipment that shift peak loads to off-peak hours.

Colder Air Temperature: <u>ITES</u> can produce chilled liquid at supply temperature of 38°F [3.3°C] or even lower without scarifying system's efficiencies. This realizes energy saving on chilled water pumping system, AHUs and FCUs. Colder supply air distribution lowers room humidity, and thus, comfort cooling can be achieved with higher room temperature. This reduce air conditioning load required, and therefore, reduces the installation cost and system operating cost.

Standby Cooling Capacity: Energy stored in <u>ITES</u> can be utilized to cater peak or unexpected loads which exceeded total cooling capacity available from the installed chillers. This is savior to the regions which having difficulties on power generation plants expansion, where with <u>ITES</u>, will significantly reduced total demand of the buildings.

1.0 GENERAL

1.1 Work Included

Provide complete electrically or microcomputer controlled air cooled chiller utilizing tandem or trio scroll compressor sets suitable for outdoor installation. Contractor shall furnish and install chillers as shown and scheduled on the drawings. Units shall be installed in accordance with this specification.

1.2 Quality Assurance

- A. Unit shall be rated in accordance with AHRI Standard 550/590-2011.
- B. Unit construction shall be designed to conform to ANSI/ ASHRAE 15 latest version safety standards, NEC (USA), and ASME Section VIII (USA) applicable codes.
- C. Unit efficiency shall meet or exceed ASHRAE Standard 90.1 (1989).
- D. Unit shall have cETL (USA) and (Canadian) approval (60Hz models).
- E. The unit shall be fully tested at the factory.

1.3 Design Base

The construction drawings indicate a system based on a selected manufacturer of equipment and the design data available to the Engineer during construction document preparation. Electrical services, size, configuration and space allocations are consistent with that manufacturer's recommendations and requirements.

Other listed or approved manufacturers are encouraged to provide equipment on this project; however, it shall be the Contractor and/or Supplier's responsibility to assure the equipment is consistent with the design base. No compensation shall be approved for revisions required by the design base or other manufacturers for any different services, space, clearances, etc.

1.4 Delivery And Handling

The unit shall be delivered to the job site completely assembled and charged with R410A refrigerant and oil by the manufacturer.

Comply with the manufacturer's instruction for rigging and handling.

1.5 Maintenance

Maintenance of the chillers shall be the responsibility of the owner and performed in accordance with the manufacturer's instructions.

2.0 PRODUCTS

2.1 Tandem or Trio Scroll Compressor Air Cooled Water Chillers

2.2 Acceptable Manufacturers

A. Dunham-Bush

B. (Approved equal)

2.3 General

Furnish and install as shown on the plans, air cooled tandem or trio scroll compressor liquid chillers. Units shall be Dunham-Bush Model ACDS or equal.

Environment friendly refrigerant with Zero ODP (Ozone Depletion Potential) shall be used. Refrigerant with non-Zero ODP shall not be accepted.

The units are to be completely factory assembled and wired in a single package complete with tandem or trio scroll compressors, evaporator, condenser, starting control with safety and operating controls. The unit shall be given a complete factory operating and control sequence test under load conditions and shall be shipped with full operating charge of R410A and full oil charge.

2.4 Performance

The units shall be furnished as shown on capacity schedules and drawings. Unit performance shall be rated in accordance with AHRI Standard 550/590-2011.

The unit shall be designed to operated safety and stably to provide chilled fluid temperature 40~60 °F [4.5~18°C], ambient temperature 45~115°F [7~46°C].

Optional Dual mode operation or low temperature operation shall be available to allow unit operation down to 20°F [-6.6°C] for leaving chilled fluid temperature.

Optional low ambient kit shall be available to allow unit operation with ambient temperature down to -20°F [-29 $^{\circ}$ C].

2.5 Construction

The unit shall be designed for maximum corrosion protection being of heavy gauge, galvanized steel construction with baked on powder coating.

2.6 Evaporator

Evaporator shall be brazed plate heat exchanger for compact foot print. Fluid side design working pressure shall be minimum 400psig [28bar] and refrigerant side design working pressure shall be minimum 450psig [31bar]. Evaporator shall be insulated with 1 inches [25mm] closed-cell insulation.

2.7 Condenser

The condenser coil shall be constructed of copper tubes and die-formed aluminum fins having selfspacing collars. Fins shall be mechanically bonded to the tubes. Integral sub-cooling circuits shall be incorporated into the coil. Condenser divider baffles shall fully separate each condenser fan section to control the airflow to maintain proper head pressure control.

2.8 Fans

The fans shall be heavy duty, aluminum blade, direct drive propeller type. Motors shall be three phase type with internal overloads. Fan blades shall be statically and dynamically balanced. Fan motor shall be rated minimum IP54 for outdoor application.

2.9 Compressor

The compressors shall be Tandem or Trio Scroll with suction and discharge manifold, with oil and gas equalization provided. All compressors shall be direct drive with an integral two-pole hermetic squirrel cage motor. A dust-proof terminal box, located in an accessible location on the compressor, shall contain all connection terminals.

The compressors shall be fitted with a crankcase heater, and oil sight glass.

2.10 Capacity Control

Compressor cycling shall be utilized to match the demand requirement of the system. The factory supplied temperature controller shall cycle compressors in response to leaving fluid temperature and maintain fluid temperature within 3.0°F [1.7°C] of setpoint. This system is to provide precise and stable control of supply fluid temperature over the complete range of operating conditions. It shall be capable of maintaining a system capacity range from 100% to____% at specified conditions without hot gas bypass.

2.11 Refrigerant Circuit

(Two compressors) (Four compressors) (Six compressors) shall be used with a direct expansion evaporator.

Insulate evaporator and other cold surfaces as required to prevent condensation at ambient conditions of 75% RH of 90°F [32°C] dry bulb with no air movement.

Each refrigerant circuit shall include expansion valve, sight glass, moisture indicator, solenoid valve, replaceable core filter-drier, liquid line shut off valves, and charging port.

2.12 Control Center

Control Center shall be fully enclosed in a steel, baked powder coated control panel with hinged access doors. Dual compartments, separating safety and operating controls from the power controls, are to be provided.

A. Controls shall include:

- 1. Compressor protection, solid state, thermal sensing overloads, with manual reset.
- 2. High refrigerant discharge pressure, manual reset.
- 3. Low refrigerant suction pressure protection
- 4. Freeze protection, manual reset.
- 5. Chilled fluid flow switch interlock.
- 6. Separate power terminal blocks for main power and 115V AC chiller heater power.
- 7. Compressor starter including current sensing overload protection.
- 8. Factory installed controller including integral antirecycle protection.
- 9. Complete labeling of all control components.
- 10. Numbered terminal strips and labeled components for easier wire tracing.
- 11. Condenser fan cycling control.

Intelligent controller shall be offered for complete unit monitoring and control. For any type of controller is offered, items listed at 2.12.A shall be complied.

Intelligent microprocessor controller shall be provided for complete monitoring and control of the unit. The unit algorithm program and operating parameters shall be stored in FLASH-MEMORY that does not require a back-up battery. Microprocessor controller which requires back up battery shall not be accepted.

The controller shall be equipped with a user friendly semi-graphical display panel. All description shall be spelled out in English; unit of measurement shall be selectable between Imperial and Metric. The display panel shall have dedicated keys for access to each individual menu/function, such as input status, compressor status, alarm history, real time clock, login and etc. The controller shall provide minimum three levels of access to prevent unauthorized access to control setpoints and parameters.

The microprocessor controller shall provide as a minimum the following features and options.

- 1. Control Functions:
 - a. Staging of compressors to achieve precise control of leaving water.
 - b. Switching of fans on the air cooled condenser to control head pressure.
 - c. Anti-recycle timer
 - d. 7 day weekly schedules for machine control.
 - e. Automatic pump-down before unit shut down; and pump-out during unit start-up
 - f. Proactive control of compressor cycling to help prevent high pressure or low pressure trips.
 - g. Proactive control providing safeties for high pressure, low pressure and freeze protection, to eliminate nuisance trips.
 - h. Proactive compressor staging to eliminate overloading during start-up to reduce compressor cycling.
 - i. Hotgas bypass control [option].
- 2. Unit Protection:
 - a. Low pressure cutout with Proactive safety.
 - b. High pressure cutout with Proactive safety.
 - c. Automatic re-start from power outage with event posting.
 - d. Evaporator freeze protection.
 - e. Sensor error.
 - f. Pump down -pump out failure.
 - g. Compressor starter error lockoff.
- 3. Readouts:
 - a. Leaving liquid temperature.
 - b. Evaporator suction pressure
 - c. Condenser discharge pressure
 - d. Unit control Status.
 - e. Water flow switch status.
 - f. Compressor status.
 - g. Liquid line solenoid control status.
 - h. Condenser fan control status.
 - i. Unit alarm status.

GUIDE SPECIFICATIONS

- 4. Setpoints with proper authorization:
 - a. Leaving chilled water temperature setpoint
 - b. Leaving chilled water temperature control zone
 - c. Evaporator freeze protection alarm setpoint
 - d. Evaporator leaving chilled water high and low temperature alarm setpoint
 - e. Fan staging control setpoints
 - f. Pumpdown control setpoints
 - g. Low suction pressure safety setpoints
 - h. High discharge pressure safety setpoints
- 5. Alarm history
 - a. 99 of most recent alarms shall be retained in Alarm History with below information:
 - i. Date and time the alarm was triggered with description on the alarm triggered
 - ii. Suction pressure
 - iii. Discharge pressure
 - iv. Evaporator leaving chilled water temperature
- 6. Group Control and Remote monitoring capabilities
 - a. Unit Master Slave Control.
 - b. Building Management System (BMS) Interface.

Controller shall be equipped with factory supplied and installed communication card [option] for interfacing with Building Management System (BMS).

- c. Various communication protocols as below shall be offered.
 - i. Modbus RTU RS485
 - ii. Modbus TCPIP
 - iii. BACnet TCPIP
 - iv. BACnet MS/TP
 - v. BACnet PTP
 - vi. LonTalk

2.13 Options and Accessories

Shell-And-Tube Evaporator (ST) – Shell-And-Tube vessel shall be supplied as evaporator in lieu of brazed plate heat exchanger. Shell-And-Tube evaporator shall be constructed in accordance with ASME CODES Sections VIII Division I for unfired pressure vessels. ASME approval shall be available on request.

Double Thick Insulation – Evaporator shall be insulated with double thick 2" [50mm] closed cell insulation for extra resistance to condensation.

Dual Mode Operation – The unit shall be capable to operate in dual mode operation, and able to deliver chilled fluid temperature down to 20 $^{\circ}$ F [-6.6 $^{\circ}$ C] during ice making mode.

Low Temp. Operation – The unit shall be capable to deliver chilled fluid temperature down to 20 °F [-6.6 °C].

Low Noise Fan (LNF) – Low noise fans are incorporated to reduce unit sound level.

Compressor Acoustic Jacket (LN2) – Compressor acoustic jackets shall be added to further reduce unit sound level.

Low Ambient Operation (LA1) – To allow unit operation down to 30°F [-1°C] ambient operation

Low Ambient Operation (LA2) – To allow the unit operation down to $0^{\circ}F$ [-18°C] ambient temperature.

Extreme Low Ambient Operation (LA3) – To allow the unit operation down to -20°F [-29°C] ambient temperature.

Heat Recovery (DES) – To recover heat from compressor to produce hot water up to 55°C.

Condenser Corrosion Protection – Options on condenser materials and costing to improve corrosion resistance.

- a. Copper (CU) fins coil
- b. Hydrophilic coated fins coil
- c. DB-COAT, the post-coated solution for condenser coil to provide extensive corrosion protection for harsh environment

Protective Panels for Condenser Coil - Wire-mesh panels to protect condenser coil faces and prevent unauthorized access to it.

Hail Guard – Full casing height painted galvanized steel panels to provide hail protection, general mechanical security and aesthetics appeal to the unit.

Hot Gas Bypass (HGBP) – To maintain unit operation below minimum unloaded capacity.

Pressure Gauges (GAG) – Pressure gauges shall be installed on the unit to display suction and discharge pressure readings.

Evaporator Heater (EVH) – Strip heater shall be wrapped around the evaporator to provide anti-freeze protection down to -20°F[-28.9°C] ambient temperature.

Hydronic Pump Package (HPP) – Pumps and fittings shall be provided with up to 50ft.wg pump head for the ease of installation. Dual pumps package shall be available for the ease of duty-standby operation.

Electrical And Controls

Unit Mounted Main Disconnect Switch – Non-fused disconnect switch with external lockable handle shall be furnished to isolate unit main incoming power supply for servicing.

Soft-starter For Compressor Motors – Solid State starter comes with bypass contactor shall be furnished to reduced mechanical stress and inrush current at compressor start-up.

IP55 Control Panel – Control panel with IP55 rating shall be supplied for harsh working environment

Voltmeter (VM3) / Ammeter (AM3) – Analog ammeter or voltmeter with 3 phase selector switch shall be supplied for voltage / current indication, located inside the control panel.

Ground Fault Interrupt (GFI) – Provides equipment with ground fault protection.

Convenience Outlet (CON) – 115Vac GFCI convenience outlet with female receptacle shall be supplied for 60Hz units.

Weather Proof Alarm Bell (WPA) – Weatherproof audible alarm shall be supplied for common alarm fault alert.

GUIDE SPECIFICATIONS

Indicating lights – Indicating lights shall be supplied for high-pressure trip, compressors overload trip and compressor run.

<u>Below options shall be available for units with</u> <u>intelligent controller.</u>

Low Ambient Monitoring and Lock-Out (LAL) – Ambient temperature sensor shall be supplied and ambient temperature readout shall be used to lock-out unit to prevent unit operation at low ambient condition.

Entering Chilled Water Temperature Sensor – Temperature sensor shall be installed to monitors fluid temperature returns to unit evaporator.

Chilled Water Pump Control – Primary chilled water pump shall be controlled by chiller's Micro Vision controller for enhanced safety operation.

System Voltage Measurement (SVM) – Voltage of power supply shall be displayed on the unit display panel.

Chilled Water Reset (RFTR) – To allowed controlled temperature setpoint to be reset by a 4-20mA signal from BAS.

Demand Limiting (AMPL) – To limit maximum running compressors by 4-20mA signal from BAS.

BMS Communication – Below communication protocol shall be provided with add-on communication card:

- a. Modbus RTU RS485 / TCPIP
- b. BACnet over IP / MSTP / PTP
- c. LonTalk

Factory Supplied, Field Installed By Customer

Evaporator Water Flow Switch (WFS) – Flow switch shall be shipped loose and installed at evaporator outlet piping at field as safety interlock to evaporator water flow status. Three options shall be available: Weather tight flow switch with CE mark; NEMA 1, and NEMA 4 rated flow switch.

Rubber-in-shear Isolators (RIS)

Spring Isolators (SPG) – Spring isolator with 1" [25.4mm] deflection.

3.0 EXECUTION

3.1 Installation Work By Mechanical Contractor

- A. Install on a flat surface level within 1/16 inches [1.6mm] and of sufficient strength to support concentrated loading. Place vibration isolators under the unit.
- B. Assemble and install all components furnished loose by manufacturer as recommended by the manufacturer's literature.
- C. Complete all fluid and electrical connections to unit, fluid circuits and electrical circuits are serviceable.
- D. Provide and install valves in fluid piping upstream and downstream of the evaporator to provide means of isolating shells for maintenance and to balance and trim system.
- E. Provide soft sound and vibration eliminator connections to the evaporator fluid inlet and outlet as well as electrical connections to the unit.
- F. Interlock chillers through a flow switch in the chilled fluid line to the chilled fluid pump to ensure the unit can operate only when fluid flow is established.
- G. Furnish and install taps for thermometers and pressure gauges in fluid piping adjacent to inlet and outlet connections of the evaporator.
- H. Provide and install drain valves with capped hose ends to each fluid box.
- I. Install vent cocks to each fluid box.

3.2 Work By Temperature Control Contractor

A. Furnish interlock wiring per manufacturer's recommendations and install loose control components furnished by chiller manufacturer.

3.3 Work By Electrical Contractor

- A. Furnish power wiring to chiller control panel and obtain required code approval.
- B. Furnish and install approved disconnect switch and short circuit protection and short circuit protection.

Malaysia

Lot 5755-6, Kidamai Industrial Park, Bukit Angkat, 43000 Kajang, Selangor, Malaysia

Tel: +603-8924 9000 Fax: +603-8739 5020

United States of America

1800 SE 38th Avenue, Homestead, Florida 33035 United States of America

Tel: +1(786)-800 9999 Fax:+1(786)-527 3539

India

Unit no : 804 , 8th Floor Spaze Platinum Towers, Sector-47, Sohna Road, Gurgaon-122018, India

Tel: +91-124-414 4430

Singapore

2 Kallang Pudding Road #07-07 Mactech Building Singapore 349307

Tel: +65-6842 2012 Fax: +65-6842 2013

China

No. 1 Dunham-Bush Road, Laishan District, Yantai, Shandong Province, China 264003

Tel: +86-535-739 7888 Fax: +86-535-739 7999

United Arab Emirates

Office # 2606, Fortune Executive Towers, Cluster T1, Jumeirah Lake Tower Dubai, UAE

Tel: +971-4-443 9207 Fax:+971-4-443 9208

Indonesia

The Boulevard Office, 3F2 JI. Fachrudin No.5, Kp. Bali, Tanah Abang Jakarta Pusat - 10250, Indonesia

Tel: +62-21-2123 1392

Vietnam

10th Floor, Nam A Bank Tower, 201-203 Cach Mang Thang 8 Street, District 3, Ho Chi Minh City, Vietnam

Tel: +84-8-6290 3108 Fax: +84-8-6290 3109

info@dunham-bush.com www.dunham-bush.com

Products that perform...By people who care

Manufacturer reserves the right to change specifications without prior notice.

United Kingdom

8 Downley Road, Havant, Hampshire, England PO9 2JD

Tel: +44-23-9247 7700 Fax: +44-23-9245 0396

South Africa

No. 57 Sovereign Drive Route 21 Corporate Park Irene, Pretoria South Africa

Tel: +27-12-345 4202 Fax: +27-12-345 4203

Thailand

48/39 Soi Praditmanutham 19 Praditmanutham Road, Lat Pharo, Bangkok 10230 Thailand

Tel: +66-0-2610 3749 Fax: +66-0-2610 3601

